Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorptio...Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.展开更多
The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and...The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.展开更多
The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designe...The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designed and synthesized via the free radical copolymerization of ionic liquid monomers,sodium p-styrenesulfonate,and crosslinkers,followed by acidification.The 31P nuclear magnetic resonance chemical shifts of adsorbed trimethylphosphine oxide indicated that the synthesized SAPILs presented moderate and single acid strength.The thermogravimetric analysis results in the temperature range of 300–345°C revealed that the synthesized SAPILs were more stable than the commercial resin Amberlite IR-120(H)(245°C).Cryogenic scanning electron microscopy testing demonstrated that SAPILs presented unique three-dimensional(3D)honeycomb structure in water,which was ascribed to the swelling-induced self-assembly of the molecules.Moreover,we used SAPILs with micron-sized honeycomb structure in water as catalysts for the hydrolysis of cyclohexyl acetate to cyclohexanol,and determined that their catalytic activity was much higher than that of homogeneous acid catalysts.The equilibrium concentrations of all reaction components inside and outside the synthesized SAPILs were quantitatively analyzed using a series of simulated reaction mixtures.Depending on the reaction mixture,the concentration of cyclohexyl acetate inside SAPIL-1 was 7.5–23.3 times higher than that outside of it,which suggested the high enrichment ability of SAPILs for cyclohexyl acetate.The excellent catalytic performance of SAPILs was attributed to their 3D honeycomb structure in water and high enrichment ability for cyclohexyl acetate,which opened up new avenues for designing highly efficient heterogeneous acid catalysts that could eventually replace conventional homogeneous acid catalysts.展开更多
Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the rea...Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the reaction. The advantages of high activity, stability, reusability and low cost for the simple synthetic procedure made the catalyst one of the best choice for the reaction.展开更多
Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared...Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared directly with carbonized mother liquor could reach to 24.8% at 410?℃. If n (Na)/ n (V) was adjusted properly, the conversion of SO 2 could be increased to 35.6% at 410?℃. Refined carbonized mother liquor could make the catalytic activity even higher at low temperature, the conversion of SO 2 could be increased to 36.65% at 410?℃. The catalyst was examined with differential thermal analysis. It was found that both endothermic peaks and exothermic peaks of catalyst shifted forward obviously and the catalyst possessed higher activity at low temperature.展开更多
Biodiesel produced from crude Jatropha curcas L.oil with trace sulfuric acid catalyst(0.02%-0.08% oil) was investigated at 135-184 ℃.Both esterification and transesterification can be well carried out simultane-ously...Biodiesel produced from crude Jatropha curcas L.oil with trace sulfuric acid catalyst(0.02%-0.08% oil) was investigated at 135-184 ℃.Both esterification and transesterification can be well carried out simultane-ously.Factors affecting the process were investigated,which included the reaction temperature,reaction time,the molar ratio of alcohol to oil,catalyst amount,water content,free fatty acid(FFA) and fatty acid methyl ester(FAME) content.Under the conditions at 165 ℃,0.06%(by mass) H2SO4 of the oil mass,1.6 MPa and 20:1 methanol/oil ratio,the yield of glycerol reached 84.8% in 2 hours.FFA and FAME showed positive effect on the transesterification in certain extent.The water mass content below 1.0% did not show a noticeable effect on trans-esterification.Reaction kinetics in the range of 155 ℃ to 175 ℃ was also measured.展开更多
A novel solid Bronsted-Lewis acid catalyst La-PW-SiO_(2)/SWCNTs(single-wall carbon nanotubes)was synthesized from the synergistic modification of H_(3)PW_(12)O_(40)(HPW)by single-walled carbon nanotubes functionalized...A novel solid Bronsted-Lewis acid catalyst La-PW-SiO_(2)/SWCNTs(single-wall carbon nanotubes)was synthesized from the synergistic modification of H_(3)PW_(12)O_(40)(HPW)by single-walled carbon nanotubes functionalized with sidewall hydroxyl groups(SWCNTs–OH)and La^(3+) via sol–gel method.The freshly prepared catalyst was characterized by several methods,and the catalytic activity and stability of it were studied from the esterification of oleic acid and methanol.Results showed that the highest conversion of oleic acid was 93.1%(mass)and maintained as high as 88.7%(mass)after six cycles of La-PW-SiO_(2)/SWCNTs.The high catalytic activity and stability of La-PW-SiO_(2)/SWCNTs can be attributed to the strong electron withdrawing effect of La^(3+) on π bond of SWCNTs,because it can facilitate the formation of a large number of strong Lewis acid sites.Therefore,the reduction of catalytic activity of a solid acid catalyst due to the fact that hydration reaction of its Bronsted acid sites can be effectively reduced.La-PW-SiO_(2)/SWCNTs can be an efficient and economical catalyst,because it shows good catalytic activity and stability.展开更多
Fluid coking on micro-spherical particles with acid sites on them could produce more light oils from Tahe AR.The conversion rate could increase by about 20% on the catalyst B compared to that obtained on the catalyst ...Fluid coking on micro-spherical particles with acid sites on them could produce more light oils from Tahe AR.The conversion rate could increase by about 20% on the catalyst B compared to that obtained on the catalyst A and the light oil yield could increase by about 12%.The yield of gasoline and diesel was more than 50% from Tahe AR over the catalyst B.Tests on acidity of the catalyst B by pyridine FT-IR spectrometry showed that the total acid content and the ratio of weak acid number to total acid number were higher than other catalysts.展开更多
This paper reports the kinetics of group transfer polymerization (GTP)of ethyl acrylate (EA)with zinc iodide catalyst in 1,2-dichloroethane using dimethyl ketene methyl trimethylsilyl acetal (MTS) as initiator at 0℃ ...This paper reports the kinetics of group transfer polymerization (GTP)of ethyl acrylate (EA)with zinc iodide catalyst in 1,2-dichloroethane using dimethyl ketene methyl trimethylsilyl acetal (MTS) as initiator at 0℃ and above 0℃. The amount of catalyst used was studied. When zinc iodide catalyst used is more than 10mol% relative to monomer, the rate of polymerization is proportional to the concentration of monomer, whereas zinc iodide catalyst used is less than 10 mol% of the monomer, the rate of polymerization is independent of the monomer concentration.In the GTP of EA an induction period was observed when the zinc iodide contents are less than l0mol%. If the reaction temperature is over 0℃, living species become unstable and diminish, leading to incomplete monomer conversion. The reaction curves equations are obtained. The polymers have narrow molecular weight distributions which are not changed as decreasing zinc iodide contents. The polydispersity is about 1.2.展开更多
A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn (Ⅳ)/g ca...A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn (Ⅳ)/g catalyst. The catalyst showed sufficient stability and catalytic activity in organic reaction such as esterification, acetalation and ketal formation, and it could be reused many times without losing its catalytic activity.展开更多
Zirconia-loaded sulfuric acid (SO2-/ZrO2) catalysts were prepared by impregnation method, molded by punch tablet machine and characterized by X-ray diffraction. SO4^2-/ZrO2 catalyst was used to obtain glycerol triac...Zirconia-loaded sulfuric acid (SO2-/ZrO2) catalysts were prepared by impregnation method, molded by punch tablet machine and characterized by X-ray diffraction. SO4^2-/ZrO2 catalyst was used to obtain glycerol triacetate (GTA) directly from glycerin. The effect of some factors, such as different temperatures of calcination and catalysts molded or not, on the reusable times of catalysts and the yield of GTA were investigated. The optimum reaction conditions were shown as follows: the reaction temperature was 403 K; the reaction time continued for 8 h; the amount of molded catalysts was 5 wt% of glycerin and the molar ratio of glycerin to acetic acid was 1 : 8. The yield of GTA was 97.93% under the optimum condition.展开更多
Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of dis...Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.展开更多
In this work, a series of SO4^2-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol–gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3...In this work, a series of SO4^2-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol–gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3 supporter through impregnation. The structure and property of catalyst were characterized by XRD, N2-BET,SEM, TEM, XPS, NH3-TPD, Pyridine-IR and FT-IR. In addition, the catalyst of chelate bidentate coordination acid center model was established. The catalytic performance test was carried out in the esterification of n-butyl alcohol with lauric acid and the catalyst showed excellent activity. The experimental results showed that the medium strength acid sites were more dominant active sites than the strong and weak acid sites for the rapid esterification reaction. Its kinetic behaviors and activation energy were studied for the esterification under the catalytic reaction condition.展开更多
A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o...A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.展开更多
Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%)...Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.展开更多
The reaction kinetics of SO 2 oxidation on Cs Rb V series sulfuric acid catalyst promoted by alkali salts such as cesium and rubidium was studied. A three step reaction mechanism of SO 2 oxidation was proposed, in whi...The reaction kinetics of SO 2 oxidation on Cs Rb V series sulfuric acid catalyst promoted by alkali salts such as cesium and rubidium was studied. A three step reaction mechanism of SO 2 oxidation was proposed, in which it was assumed that oxidation of quadrivalent vanadium complex was a controlling step. Then, a mechanism model equation was concluded according to the three step reaction mechanism. The SO 2 oxidation rate was measured with a non gradient reactor under the conditions of temperature of 380~520?℃ and space velocity of 3?600~7?200?h -1 . Through calculating with Powell nonlinear regression method, the parameters of model equation were obtained: K 1=0.152?exp(-62?073/ (RT) ), K 2=8.18?exp(-2?384/ (RT) ), K 3=0.221?exp(-18?949/ (RT) ). It was found that the model equation could fit with all the experimental reaction rate data very well. [展开更多
Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in t...Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in the reaction of esterification of Mono-fatty alcohol polyoxyethylene maleate esters with 1,4-butanediol. The structure of carbon-based solid acid catalyst was charactered by IR and XRD, characterizations showed that this catalyst exhibited high –SO3H loading. Reusability of the carbon-based solid acid catalyst for esterification showed that after recycling five times the activity remained unchanged.展开更多
A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron...A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.展开更多
The liquid phase alkylation of catechol with tert-butyl alcohol to produce4-tert-butyl catechol (4-TBC) was carried out over MCM-41, HZSM-5, H-exchanged montmorillonite andnovel acidic porous montmorillonite heterostr...The liquid phase alkylation of catechol with tert-butyl alcohol to produce4-tert-butyl catechol (4-TBC) was carried out over MCM-41, HZSM-5, H-exchanged montmorillonite andnovel acidic porous montmorillonite heterostructures (PMHs). Upon all catalysts tested, 4-TBC is themain product and 3-tert-butyl catechol (3-TBC) and 3,5-di-tert-butyl catechol are the sideproducts. The synthetic PMHs showed higher conversion of catechol and better selectivity to 4-TBCcompared to other solid acid catalysts tested. Over the PMHs derived from H-exchangedmontmorillonite through template extraction processes, the suitable reaction temperature is ca 410K, the ratio of catechol to tert-butyl alcohol is 1:2. Increasing the amount of catalyst (lowerweight hourly space velocity) can improve the conversion of catechol and influence the selectivityslightly. The reasonable reaction time is ca 8 h. The type and strength of acidity ofH-montmorillonite and PMH were determined by pyridine adsorption FT-IR and ammoniatemperature-programmed desorption techniques. The medium and strong acid sites are conducive toproducing 4-TBC and the weak acid sites to facilitating the 3-TBC formation. The differences betweenthe PMHs from calcination and those from extraction are attributed to proton migration and aciditychange in the gallery surface.展开更多
Ring opening of extremely hydrophobic epoxides with water, amines, sodium azide and thiophenol was realized in the mixture solvent of water and 1, 4-dioxane under reflux condition. Hot water was believed to act as a m...Ring opening of extremely hydrophobic epoxides with water, amines, sodium azide and thiophenol was realized in the mixture solvent of water and 1, 4-dioxane under reflux condition. Hot water was believed to act as a mild Bronsted acid catalyst in the epoxide-opening reactions.展开更多
基金Supported by the Research Fund for the Doctoral Program of Higher Education(No20050010014)the China Petroleum &Chemical Corporation ( No X503015 )the Key Discipline Construction Foundation of Beijing Education Committee ( NoXK100100643)
文摘Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.
文摘The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.
文摘The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designed and synthesized via the free radical copolymerization of ionic liquid monomers,sodium p-styrenesulfonate,and crosslinkers,followed by acidification.The 31P nuclear magnetic resonance chemical shifts of adsorbed trimethylphosphine oxide indicated that the synthesized SAPILs presented moderate and single acid strength.The thermogravimetric analysis results in the temperature range of 300–345°C revealed that the synthesized SAPILs were more stable than the commercial resin Amberlite IR-120(H)(245°C).Cryogenic scanning electron microscopy testing demonstrated that SAPILs presented unique three-dimensional(3D)honeycomb structure in water,which was ascribed to the swelling-induced self-assembly of the molecules.Moreover,we used SAPILs with micron-sized honeycomb structure in water as catalysts for the hydrolysis of cyclohexyl acetate to cyclohexanol,and determined that their catalytic activity was much higher than that of homogeneous acid catalysts.The equilibrium concentrations of all reaction components inside and outside the synthesized SAPILs were quantitatively analyzed using a series of simulated reaction mixtures.Depending on the reaction mixture,the concentration of cyclohexyl acetate inside SAPIL-1 was 7.5–23.3 times higher than that outside of it,which suggested the high enrichment ability of SAPILs for cyclohexyl acetate.The excellent catalytic performance of SAPILs was attributed to their 3D honeycomb structure in water and high enrichment ability for cyclohexyl acetate,which opened up new avenues for designing highly efficient heterogeneous acid catalysts that could eventually replace conventional homogeneous acid catalysts.
基金National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Tech- nology of China (No.2006BAE03B06)
文摘Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the reaction. The advantages of high activity, stability, reusability and low cost for the simple synthetic procedure made the catalyst one of the best choice for the reaction.
文摘Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared directly with carbonized mother liquor could reach to 24.8% at 410?℃. If n (Na)/ n (V) was adjusted properly, the conversion of SO 2 could be increased to 35.6% at 410?℃. Refined carbonized mother liquor could make the catalytic activity even higher at low temperature, the conversion of SO 2 could be increased to 36.65% at 410?℃. The catalyst was examined with differential thermal analysis. It was found that both endothermic peaks and exothermic peaks of catalyst shifted forward obviously and the catalyst possessed higher activity at low temperature.
基金Supported by the Key Grant Project of Chinese Ministry of Education (307023)the National Natural Science Foundation of China (20976108)the National Key Technology Research and Development Program (2007BAD50D05)
文摘Biodiesel produced from crude Jatropha curcas L.oil with trace sulfuric acid catalyst(0.02%-0.08% oil) was investigated at 135-184 ℃.Both esterification and transesterification can be well carried out simultane-ously.Factors affecting the process were investigated,which included the reaction temperature,reaction time,the molar ratio of alcohol to oil,catalyst amount,water content,free fatty acid(FFA) and fatty acid methyl ester(FAME) content.Under the conditions at 165 ℃,0.06%(by mass) H2SO4 of the oil mass,1.6 MPa and 20:1 methanol/oil ratio,the yield of glycerol reached 84.8% in 2 hours.FFA and FAME showed positive effect on the transesterification in certain extent.The water mass content below 1.0% did not show a noticeable effect on trans-esterification.Reaction kinetics in the range of 155 ℃ to 175 ℃ was also measured.
基金supported by the National Natural Science Foundation of China(21766009)Program of Qingjiang Excellent Young Talents(Jiangxi University of Science and Technology)。
文摘A novel solid Bronsted-Lewis acid catalyst La-PW-SiO_(2)/SWCNTs(single-wall carbon nanotubes)was synthesized from the synergistic modification of H_(3)PW_(12)O_(40)(HPW)by single-walled carbon nanotubes functionalized with sidewall hydroxyl groups(SWCNTs–OH)and La^(3+) via sol–gel method.The freshly prepared catalyst was characterized by several methods,and the catalytic activity and stability of it were studied from the esterification of oleic acid and methanol.Results showed that the highest conversion of oleic acid was 93.1%(mass)and maintained as high as 88.7%(mass)after six cycles of La-PW-SiO_(2)/SWCNTs.The high catalytic activity and stability of La-PW-SiO_(2)/SWCNTs can be attributed to the strong electron withdrawing effect of La^(3+) on π bond of SWCNTs,because it can facilitate the formation of a large number of strong Lewis acid sites.Therefore,the reduction of catalytic activity of a solid acid catalyst due to the fact that hydration reaction of its Bronsted acid sites can be effectively reduced.La-PW-SiO_(2)/SWCNTs can be an efficient and economical catalyst,because it shows good catalytic activity and stability.
文摘Fluid coking on micro-spherical particles with acid sites on them could produce more light oils from Tahe AR.The conversion rate could increase by about 20% on the catalyst B compared to that obtained on the catalyst A and the light oil yield could increase by about 12%.The yield of gasoline and diesel was more than 50% from Tahe AR over the catalyst B.Tests on acidity of the catalyst B by pyridine FT-IR spectrometry showed that the total acid content and the ratio of weak acid number to total acid number were higher than other catalysts.
文摘This paper reports the kinetics of group transfer polymerization (GTP)of ethyl acrylate (EA)with zinc iodide catalyst in 1,2-dichloroethane using dimethyl ketene methyl trimethylsilyl acetal (MTS) as initiator at 0℃ and above 0℃. The amount of catalyst used was studied. When zinc iodide catalyst used is more than 10mol% relative to monomer, the rate of polymerization is proportional to the concentration of monomer, whereas zinc iodide catalyst used is less than 10 mol% of the monomer, the rate of polymerization is independent of the monomer concentration.In the GTP of EA an induction period was observed when the zinc iodide contents are less than l0mol%. If the reaction temperature is over 0℃, living species become unstable and diminish, leading to incomplete monomer conversion. The reaction curves equations are obtained. The polymers have narrow molecular weight distributions which are not changed as decreasing zinc iodide contents. The polydispersity is about 1.2.
文摘A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn (Ⅳ)/g catalyst. The catalyst showed sufficient stability and catalytic activity in organic reaction such as esterification, acetalation and ketal formation, and it could be reused many times without losing its catalytic activity.
基金supported by the National High Technology Research and Development Program of China (No. 2009AA03Z222 and No. 2009AA05Z437)the "Six Talents Pinnacle Program" of Jiangsu Province of China (No. 2008028)
文摘Zirconia-loaded sulfuric acid (SO2-/ZrO2) catalysts were prepared by impregnation method, molded by punch tablet machine and characterized by X-ray diffraction. SO4^2-/ZrO2 catalyst was used to obtain glycerol triacetate (GTA) directly from glycerin. The effect of some factors, such as different temperatures of calcination and catalysts molded or not, on the reusable times of catalysts and the yield of GTA were investigated. The optimum reaction conditions were shown as follows: the reaction temperature was 403 K; the reaction time continued for 8 h; the amount of molded catalysts was 5 wt% of glycerin and the molar ratio of glycerin to acetic acid was 1 : 8. The yield of GTA was 97.93% under the optimum condition.
文摘Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.
基金Sichuan University and laboratory for their support.
文摘In this work, a series of SO4^2-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol–gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3 supporter through impregnation. The structure and property of catalyst were characterized by XRD, N2-BET,SEM, TEM, XPS, NH3-TPD, Pyridine-IR and FT-IR. In addition, the catalyst of chelate bidentate coordination acid center model was established. The catalytic performance test was carried out in the esterification of n-butyl alcohol with lauric acid and the catalyst showed excellent activity. The experimental results showed that the medium strength acid sites were more dominant active sites than the strong and weak acid sites for the rapid esterification reaction. Its kinetic behaviors and activation energy were studied for the esterification under the catalytic reaction condition.
文摘A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.
文摘Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.
文摘The reaction kinetics of SO 2 oxidation on Cs Rb V series sulfuric acid catalyst promoted by alkali salts such as cesium and rubidium was studied. A three step reaction mechanism of SO 2 oxidation was proposed, in which it was assumed that oxidation of quadrivalent vanadium complex was a controlling step. Then, a mechanism model equation was concluded according to the three step reaction mechanism. The SO 2 oxidation rate was measured with a non gradient reactor under the conditions of temperature of 380~520?℃ and space velocity of 3?600~7?200?h -1 . Through calculating with Powell nonlinear regression method, the parameters of model equation were obtained: K 1=0.152?exp(-62?073/ (RT) ), K 2=8.18?exp(-2?384/ (RT) ), K 3=0.221?exp(-18?949/ (RT) ). It was found that the model equation could fit with all the experimental reaction rate data very well. [
文摘Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in the reaction of esterification of Mono-fatty alcohol polyoxyethylene maleate esters with 1,4-butanediol. The structure of carbon-based solid acid catalyst was charactered by IR and XRD, characterizations showed that this catalyst exhibited high –SO3H loading. Reusability of the carbon-based solid acid catalyst for esterification showed that after recycling five times the activity remained unchanged.
文摘A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.
基金Supported by the National Natural Science Foundation of China (No. 20376075) the Natural Science Foundation of Zhejiang Province (No. 201057).
文摘The liquid phase alkylation of catechol with tert-butyl alcohol to produce4-tert-butyl catechol (4-TBC) was carried out over MCM-41, HZSM-5, H-exchanged montmorillonite andnovel acidic porous montmorillonite heterostructures (PMHs). Upon all catalysts tested, 4-TBC is themain product and 3-tert-butyl catechol (3-TBC) and 3,5-di-tert-butyl catechol are the sideproducts. The synthetic PMHs showed higher conversion of catechol and better selectivity to 4-TBCcompared to other solid acid catalysts tested. Over the PMHs derived from H-exchangedmontmorillonite through template extraction processes, the suitable reaction temperature is ca 410K, the ratio of catechol to tert-butyl alcohol is 1:2. Increasing the amount of catalyst (lowerweight hourly space velocity) can improve the conversion of catechol and influence the selectivityslightly. The reasonable reaction time is ca 8 h. The type and strength of acidity ofH-montmorillonite and PMH were determined by pyridine adsorption FT-IR and ammoniatemperature-programmed desorption techniques. The medium and strong acid sites are conducive toproducing 4-TBC and the weak acid sites to facilitating the 3-TBC formation. The differences betweenthe PMHs from calcination and those from extraction are attributed to proton migration and aciditychange in the gallery surface.
基金financially supported by the National Natural Science Foundation of China (20402007, 20772065)Program for New Century Excellent Talents in University+1 种基金the 111 Project (B06005)the National High-tech Research & Development Program of China (863 Projcect, 2006AA020502)
文摘Ring opening of extremely hydrophobic epoxides with water, amines, sodium azide and thiophenol was realized in the mixture solvent of water and 1, 4-dioxane under reflux condition. Hot water was believed to act as a mild Bronsted acid catalyst in the epoxide-opening reactions.