Structural properties of nucleobase underlie their ultrafast excited-state dynamics and low fluorescence quantum yields, which cause effectively nonradiative decay process and render them like sunscreens. Thus, eight ...Structural properties of nucleobase underlie their ultrafast excited-state dynamics and low fluorescence quantum yields, which cause effectively nonradiative decay process and render them like sunscreens. Thus, eight guanine analogs[N-2-(2'-nitrobenzoyl)-guanine, N-2-(3'-nitrohenzoyl)-guanine, N-2-(4'-nitrobenzoyl)-guanine, N-2-(2'-hydroxybenzoyl)-guanine, N-2-(4'-methoxylbenzoyl)-guanine, N-2-(4'-chloricbenzoyl)-guanine, N-2-(4'- me- thylicbenzoyl)-guanine and N-2-(3',5'-dinitrobenzoyl)-guanine] with different substituted benzoyls, except N-2-(4'-chloricbenzoyl)-guanine, were newly synthesized. In contrast with guanine, they exhibit wider ultraviolet absorbent range, higher molar extinction coefficient and lower fluorescence intensity.展开更多
基金Supported by the Foundation for University Key Teachers from the Ministry of Education of China(No.0024951)
文摘Structural properties of nucleobase underlie their ultrafast excited-state dynamics and low fluorescence quantum yields, which cause effectively nonradiative decay process and render them like sunscreens. Thus, eight guanine analogs[N-2-(2'-nitrobenzoyl)-guanine, N-2-(3'-nitrohenzoyl)-guanine, N-2-(4'-nitrobenzoyl)-guanine, N-2-(2'-hydroxybenzoyl)-guanine, N-2-(4'-methoxylbenzoyl)-guanine, N-2-(4'-chloricbenzoyl)-guanine, N-2-(4'- me- thylicbenzoyl)-guanine and N-2-(3',5'-dinitrobenzoyl)-guanine] with different substituted benzoyls, except N-2-(4'-chloricbenzoyl)-guanine, were newly synthesized. In contrast with guanine, they exhibit wider ultraviolet absorbent range, higher molar extinction coefficient and lower fluorescence intensity.