We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of s...We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.展开更多
A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decompositi...A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.展开更多
Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new met...Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.展开更多
In this paper,a reconstruction problem of the spatial dependent acoustic source from multiple frequency data is discussed.Suppose that the source function is supported on a bounded domain and the piecewise constant in...In this paper,a reconstruction problem of the spatial dependent acoustic source from multiple frequency data is discussed.Suppose that the source function is supported on a bounded domain and the piecewise constant intensities of the source are known on the support.We characterize unknown domain by the level set technique.And the level set function can be modeled by a Hamilton-Jacobi system.We use the ensemble Kalman filter approach to analyze the system state.This method can avoid to deal with the nonlinearity directly and reduce the computation complexity.In addition,the algorithm can achieve the stable state quickly with the Hamilton-Jacobi system.From some numerical examples,we show these advantages and verify the feasibility and effectiveness.展开更多
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l...Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.展开更多
To quantitatively study the location errors induced by deviation of sonic speed, the line and plane location tests were carried out. A broken pencil was simulated as acoustic emission source in the rocks. The line and...To quantitatively study the location errors induced by deviation of sonic speed, the line and plane location tests were carried out. A broken pencil was simulated as acoustic emission source in the rocks. The line and plane location tests were carried out in the granite rod using two sensors and the cube of marble using four sensors, respectively. To compare the position accuracy between line and plane positions, the line poison test was also carried out on the marble surface. The results show that for line positioning, the maximum error of absolute distance is about 0.8 cm. With the speed difference of 200 m/s, the average value of absolute difference from the position error is about 0.4 cm. For the plane positioning, in the case of the sensor array of 30 cm, the absolute positioning distance is up to 8.7 cm. It can be seen that the sonic speed seriously impacts on the plane positioning accuracy. The plane positioning error is lager than the line positioning error, which means that when the line position can satisfy the need in practical engineering, it is better to use the line position instead of the plane location. The plane positioning error with the diagonal speed is the minimum one.展开更多
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
The 'dream' of acoustic emission (AE) testing is to get the acoustic source characteristics from AE signals, especially when evaluating aging pressure vessels. In this paper, the wavelet transform was used to...The 'dream' of acoustic emission (AE) testing is to get the acoustic source characteristics from AE signals, especially when evaluating aging pressure vessels. In this paper, the wavelet transform was used to analyze different AE signals from cracks (surface and inner), pencil-lead-breakage and leakage. These acoustic sources were applied on an actual pressure vessel. While the vessel experienced hydraulic pressure, their AE signals were acquired by a digital AE testing system with a wide frequency band transducer and a high speed A/D converter. Then, the digital signals were analyzed using the wavelet transform method. Correlation coefficients of the transformed data show that the different acoustic sources can be easily identified.展开更多
There exist a large class of acoustic sources which have an underlying periodic phenomenon. Unlike the well-studied Bearings-Only Tracking(BOT) of an aperiodic acoustic source,this paper considers the problem of track...There exist a large class of acoustic sources which have an underlying periodic phenomenon. Unlike the well-studied Bearings-Only Tracking(BOT) of an aperiodic acoustic source,this paper considers the problem of tracking a periodic acoustic source. For periodic acoustic tracking, the signal emission time is known. However, the true measurement reception time is unknown because it is corrupted by noise due to propagation delay. We augment the sensor’s signal reception time onto bearing measurements, and the information of the delay constraint is included in the original bearing measurements to compensate for the propagation delay. A Cubature Kalman Filter(CKF) is used for periodic acoustic source tracking, in which measurement prediction cannot be obtained directly because the sensor’s position at the true measurement reception time is unknown.We solve this problem by using the implicit Gauss-Helmert Sensor Model(GHSM) for estimating the sensor’s position, which consists of the sensor’s motion equation and the known measured sensor’s signal reception time equation related to the state. Then a CKF based on the GHSM(CF-GHSM) is developed for periodic acoustic tracking. Illustrative examples demonstrate that the CF-GHSM algorithm is better than other algorithms for periodic acoustic source tracking.展开更多
The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered. It is shown that the acoustic field inside the borehole, converted...The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered. It is shown that the acoustic field inside the borehole, converted electric and magnetic fields and coupled fields outside the borehole are composed of an infinitude of multipole fields with different orders. The numerical results show that both the electromagnetic waves and the seismoelectric field in the borehole, and the three components of both electric field and magnetic field can be detected. Measurements on the borehole axis will be of advantage to determining shear velocity information. The components of the symmetric and nonsymmetric acoustic and electromagnetic fields can be strengthened or weakened by adding or subtracting the two full waveforms logged in some azimuths. It may be a new method of directly measuring the shear wave velocity by using the borehole seismoelectric effect.展开更多
Magneto-acoustic tomography with current injection(MAT-CI) is a type of hybrid imaging;under the excitation of the static magnetic field, the thermoacoustic effect and the Lorentz force effect will exist at the same t...Magneto-acoustic tomography with current injection(MAT-CI) is a type of hybrid imaging;under the excitation of the static magnetic field, the thermoacoustic effect and the Lorentz force effect will exist at the same time. Therefore,the detected signal is a mixed signal generated by the simultaneous action of the two effects, but the influence of excitation parameters on the two effects is different. In this paper, for objects with different conductivity, the proportion of thermoacoustic signal(TA) and magneto-acoustic signal(MA) in the mixed signal is quantitatively analyzed in terms of three aspects: the magnetic induction intensity, pulse excitation and injection current polarity. Experimental and simulation analyses show that the intensity ratio of MA to TA is not affected when the conductivity varies from 0.1 S/m to 1.5 S/m and other conditions remain unchanged. When the amplitude of the pulse excitation and the strength of the magnetic induction are different, the growth rates of MA and TA are different, which has a significant impact on the proportion of the two signals in the mixed signal. At the same time, due to the Lorentz force effect, MA is affected by the polarity of the injected current and the direction of the static magnetic field. The combination of the static magnetic field and the injected current can not only distinguish the two signals in the mixed signal, but also effectively enhance the intensity of the mixed signal and improve the quality of the reconstructed image.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
On the basis of the nearfield acoustic holography (NAH) based on the distributed source boundary point method (DSBPM), a novel NAH based on the equivalent source method (ESM) is proposed. The theoretical model of the ...On the basis of the nearfield acoustic holography (NAH) based on the distributed source boundary point method (DSBPM), a novel NAH based on the equivalent source method (ESM) is proposed. The theoretical model of the proposed method is established at first. And then, the error sensitivity and the reconstruction problems of a multi-source acoustic field and a semi-free acoustic field are analyzed, and the corresponding treatment methods are proposed. Subsequently, an experiment on a speaker is investigated to validate the feasibility and correctness of the method. In the method, no discretization is needed on the boundary of the vibrating body. The acoustic field is predicted directly by a set of weighted equivalent sources located inside the vibrating body. Therefore, the variable interpolation, the treatments of singular integrals and non-uniqueness of solutions in the characteristic wave number are avoided. Additionally, the method is adapted to arbitrary-shaped source, so it is really a meshless method. Furthermore, there are such merits as the simple principle, the high calculation efficiency and precision. It is valuabe for the NAH to be applied in the practical engineering field.展开更多
The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sour...The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.展开更多
To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating...To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.展开更多
Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper...Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper. First, the discrete time vector for interpolation and the amplitude restoration formula is derived based on the moving relationship and the Morse acoustic theory, then the amplitude weights are corrected and the distortion signal is interpolated. Every point of the discrete signal is operated separately in time domain. Compared with the existing frequency domain methods, this method does not need to know the characteristic frequency beforehand and would not be influenced by the blending of the frequency band. Hence, this method can be employed to correct multiple frequency signals and it is also a simple and effective Doppler effect reduction method.展开更多
A theoretical model is presented to describe the parametric acoustic field generated by a piston radiator. In the model, the high-frequency primary wave interaction region that is truncated by a low-pass acoustic filt...A theoretical model is presented to describe the parametric acoustic field generated by a piston radiator. In the model, the high-frequency primary wave interaction region that is truncated by a low-pass acoustic filter can be viewed as a cylindrical source within the Rayleigh distance of the piston. When the radius of the piston is much smaller than the length of the parametric region, this model is reduced to the Berketey's End-Fire Line Army model. Comparison between numerical calculations and experimental measurement show that the generated parametric sound field (especially near the axis) agrees well with the experiment results.展开更多
This paper presents the method named acoustic holography which can be used to identify noise sources. A new formula of holography reconstruction is obtained, based on the Kirchhoff integral formula. Some simulating te...This paper presents the method named acoustic holography which can be used to identify noise sources. A new formula of holography reconstruction is obtained, based on the Kirchhoff integral formula. Some simulating tests are carried out using the new formula. The comparison with other reconstruction formulas proves that the new formula is more effective. By using acoustic holography method, some interesting results about the noise of a vehicle are shown. The results proves that acoustic holography is an effective method for the identification of the complex noise sources.展开更多
The theory of passive localization for underwater sources based on acoustic ray channel modeling is discussed. The principles of channel modeling in Ray-theory, determination of eigenrays which connect source and rece...The theory of passive localization for underwater sources based on acoustic ray channel modeling is discussed. The principles of channel modeling in Ray-theory, determination of eigenrays which connect source and receiver, analysis of DOA arriving structure and time delay spectrum arriving structure, their relationship to source location are given in the paper. Source location is estimated by matching measured DOA and TDS to their calculated counterparts. The method of Ray-theory based passive localization features its simplicity, less calculation, short array aperture and robust performance to environment parameters, as compared with those methods based on Normal Mode theory.展开更多
Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational tra...Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.展开更多
基金partially supported by the NSF(Grant Nos.2012046,2152011,and 2309534)partially supported by the NSF(Grant Nos.DMS-1715178,DMS-2006881,and DMS-2237534)+1 种基金NIH(Grant No.R03-EB033521)startup fund from Michigan State University.
文摘We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.
基金Supported by the National Natural Science Foundation of China (60872073)~~
文摘A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.
基金This work was supported by the Project of Scientific Research of the Education Department of Liaoning Province,PRC(No.202023083).
文摘Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.
文摘In this paper,a reconstruction problem of the spatial dependent acoustic source from multiple frequency data is discussed.Suppose that the source function is supported on a bounded domain and the piecewise constant intensities of the source are known on the support.We characterize unknown domain by the level set technique.And the level set function can be modeled by a Hamilton-Jacobi system.We use the ensemble Kalman filter approach to analyze the system state.This method can avoid to deal with the nonlinearity directly and reduce the computation complexity.In addition,the algorithm can achieve the stable state quickly with the Hamilton-Jacobi system.From some numerical examples,we show these advantages and verify the feasibility and effectiveness.
基金the financial support provided by the National Key Research and Development Program for Young Scientists(No.2021YFC2900400)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230914)+2 种基金National Natural Science Foundation of China(No.52304123)China Postdoctoral Science Foundation(No.2023M730412)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027).
文摘Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (kjdb2010-6) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China
文摘To quantitatively study the location errors induced by deviation of sonic speed, the line and plane location tests were carried out. A broken pencil was simulated as acoustic emission source in the rocks. The line and plane location tests were carried out in the granite rod using two sensors and the cube of marble using four sensors, respectively. To compare the position accuracy between line and plane positions, the line poison test was also carried out on the marble surface. The results show that for line positioning, the maximum error of absolute distance is about 0.8 cm. With the speed difference of 200 m/s, the average value of absolute difference from the position error is about 0.4 cm. For the plane positioning, in the case of the sensor array of 30 cm, the absolute positioning distance is up to 8.7 cm. It can be seen that the sonic speed seriously impacts on the plane positioning accuracy. The plane positioning error is lager than the line positioning error, which means that when the line position can satisfy the need in practical engineering, it is better to use the line position instead of the plane location. The plane positioning error with the diagonal speed is the minimum one.
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.
文摘The 'dream' of acoustic emission (AE) testing is to get the acoustic source characteristics from AE signals, especially when evaluating aging pressure vessels. In this paper, the wavelet transform was used to analyze different AE signals from cracks (surface and inner), pencil-lead-breakage and leakage. These acoustic sources were applied on an actual pressure vessel. While the vessel experienced hydraulic pressure, their AE signals were acquired by a digital AE testing system with a wide frequency band transducer and a high speed A/D converter. Then, the digital signals were analyzed using the wavelet transform method. Correlation coefficients of the transformed data show that the different acoustic sources can be easily identified.
基金supported in part by the National Key Research and Development Plan,China(No.2017YFB1301101)the National Natural Science Foundation of China(Nos.61673317 and 61673313)。
文摘There exist a large class of acoustic sources which have an underlying periodic phenomenon. Unlike the well-studied Bearings-Only Tracking(BOT) of an aperiodic acoustic source,this paper considers the problem of tracking a periodic acoustic source. For periodic acoustic tracking, the signal emission time is known. However, the true measurement reception time is unknown because it is corrupted by noise due to propagation delay. We augment the sensor’s signal reception time onto bearing measurements, and the information of the delay constraint is included in the original bearing measurements to compensate for the propagation delay. A Cubature Kalman Filter(CKF) is used for periodic acoustic source tracking, in which measurement prediction cannot be obtained directly because the sensor’s position at the true measurement reception time is unknown.We solve this problem by using the implicit Gauss-Helmert Sensor Model(GHSM) for estimating the sensor’s position, which consists of the sensor’s motion equation and the known measured sensor’s signal reception time equation related to the state. Then a CKF based on the GHSM(CF-GHSM) is developed for periodic acoustic tracking. Illustrative examples demonstrate that the CF-GHSM algorithm is better than other algorithms for periodic acoustic source tracking.
基金Project supported by National Natural Science Foundation of China (Grant Nos 10534040 and 10272038) and Doctorate Foundation of the State Education Ministry of China (Grant Nos 20040183045 and 20030183052).
文摘The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered. It is shown that the acoustic field inside the borehole, converted electric and magnetic fields and coupled fields outside the borehole are composed of an infinitude of multipole fields with different orders. The numerical results show that both the electromagnetic waves and the seismoelectric field in the borehole, and the three components of both electric field and magnetic field can be detected. Measurements on the borehole axis will be of advantage to determining shear velocity information. The components of the symmetric and nonsymmetric acoustic and electromagnetic fields can be strengthened or weakened by adding or subtracting the two full waveforms logged in some azimuths. It may be a new method of directly measuring the shear wave velocity by using the borehole seismoelectric effect.
基金funded by the Natural Science Foundation of Beijing (Grant Nos. 7212210 and 3214064)the Natural Science Foundation of China (Grant No. 51937010)+1 种基金Beijing Science and Technology Commission Project (Grant No. Z181100003818006)the General Project of Natural Science Foundation of Shandong Province, Research on a New Method of Thermoacoustic Imaging Based on Modular Learning, Project Number: ZR2021ME093。
文摘Magneto-acoustic tomography with current injection(MAT-CI) is a type of hybrid imaging;under the excitation of the static magnetic field, the thermoacoustic effect and the Lorentz force effect will exist at the same time. Therefore,the detected signal is a mixed signal generated by the simultaneous action of the two effects, but the influence of excitation parameters on the two effects is different. In this paper, for objects with different conductivity, the proportion of thermoacoustic signal(TA) and magneto-acoustic signal(MA) in the mixed signal is quantitatively analyzed in terms of three aspects: the magnetic induction intensity, pulse excitation and injection current polarity. Experimental and simulation analyses show that the intensity ratio of MA to TA is not affected when the conductivity varies from 0.1 S/m to 1.5 S/m and other conditions remain unchanged. When the amplitude of the pulse excitation and the strength of the magnetic induction are different, the growth rates of MA and TA are different, which has a significant impact on the proportion of the two signals in the mixed signal. At the same time, due to the Lorentz force effect, MA is affected by the polarity of the injected current and the direction of the static magnetic field. The combination of the static magnetic field and the injected current can not only distinguish the two signals in the mixed signal, but also effectively enhance the intensity of the mixed signal and improve the quality of the reconstructed image.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50275044)the Research Fund for theDoctoral Program of Higher Education(Grant No.20020359005).
文摘On the basis of the nearfield acoustic holography (NAH) based on the distributed source boundary point method (DSBPM), a novel NAH based on the equivalent source method (ESM) is proposed. The theoretical model of the proposed method is established at first. And then, the error sensitivity and the reconstruction problems of a multi-source acoustic field and a semi-free acoustic field are analyzed, and the corresponding treatment methods are proposed. Subsequently, an experiment on a speaker is investigated to validate the feasibility and correctness of the method. In the method, no discretization is needed on the boundary of the vibrating body. The acoustic field is predicted directly by a set of weighted equivalent sources located inside the vibrating body. Therefore, the variable interpolation, the treatments of singular integrals and non-uniqueness of solutions in the characteristic wave number are avoided. Additionally, the method is adapted to arbitrary-shaped source, so it is really a meshless method. Furthermore, there are such merits as the simple principle, the high calculation efficiency and precision. It is valuabe for the NAH to be applied in the practical engineering field.
基金supported by the China Scholarship Council,the National Natural Science Foundation of China(61171197,61201307,61371045)the Innovation Funds of Harbin Institute of Technology(Grant IDGA18102011)the Promotive Research Fund for Excellent Young and Middle-Aged Scientisits of Shandong Province(BS2010DX001)
文摘The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.
基金supported by the National Natural Science Foundation of China(Grant No.51305329)the China Postdoctoral Science Foundation(Grant No.2014T70911)+1 种基金the Doctoral Foundation of Education Ministry of China(Grant No.20130201120040)Basic Research Project of Natural Science in Shaanxi Province(Grant No.2015JQ5183)
文摘To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.
基金supported by the National Science Foundation of China(51075379)
文摘Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper. First, the discrete time vector for interpolation and the amplitude restoration formula is derived based on the moving relationship and the Morse acoustic theory, then the amplitude weights are corrected and the distortion signal is interpolated. Every point of the discrete signal is operated separately in time domain. Compared with the existing frequency domain methods, this method does not need to know the characteristic frequency beforehand and would not be influenced by the blending of the frequency band. Hence, this method can be employed to correct multiple frequency signals and it is also a simple and effective Doppler effect reduction method.
文摘A theoretical model is presented to describe the parametric acoustic field generated by a piston radiator. In the model, the high-frequency primary wave interaction region that is truncated by a low-pass acoustic filter can be viewed as a cylindrical source within the Rayleigh distance of the piston. When the radius of the piston is much smaller than the length of the parametric region, this model is reduced to the Berketey's End-Fire Line Army model. Comparison between numerical calculations and experimental measurement show that the generated parametric sound field (especially near the axis) agrees well with the experiment results.
基金This work wassupportedby the Natural Science Foundation of China(No.59775020).
文摘This paper presents the method named acoustic holography which can be used to identify noise sources. A new formula of holography reconstruction is obtained, based on the Kirchhoff integral formula. Some simulating tests are carried out using the new formula. The comparison with other reconstruction formulas proves that the new formula is more effective. By using acoustic holography method, some interesting results about the noise of a vehicle are shown. The results proves that acoustic holography is an effective method for the identification of the complex noise sources.
文摘The theory of passive localization for underwater sources based on acoustic ray channel modeling is discussed. The principles of channel modeling in Ray-theory, determination of eigenrays which connect source and receiver, analysis of DOA arriving structure and time delay spectrum arriving structure, their relationship to source location are given in the paper. Source location is estimated by matching measured DOA and TDS to their calculated counterparts. The method of Ray-theory based passive localization features its simplicity, less calculation, short array aperture and robust performance to environment parameters, as compared with those methods based on Normal Mode theory.
文摘Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.