Many of the traditional woods used for musical instruments have been selected not only for their natural beauty but for the high content of waxes and resins that help increase water repellency of the wood but have lit...Many of the traditional woods used for musical instruments have been selected not only for their natural beauty but for the high content of waxes and resins that help increase water repellency of the wood but have little or no effect on stabilizing dimensions or vibrational properties. Moisture changes have a great negative effect on both the musical quality of wooden musical instruments and limit the length of time they can be played without loss of musical quality. It is possible to stabilize both the wood and the vibrational properties by chemically modifying the wood. One technology that can do this is the reaction of wood with acetic anhydride. Acetylation of wood slightly increases density, and slightly (about 5%) reduces both sound velocity and sound absorption when compared to unreactedwood. Acetylation does not change the acoustic converting efficiency. Acetylation reduces the amount of moisture in the cell wall decreasing the effect of moisture on the viscose properties of wood. This allows a wooded musical instrument to be played longer without having to let it dry out. This gives an instrument made from acetylated wood a greater range of moisture conditions it can be played in without losing tone quality. Acetylation also greatly stabilizes the physical dimensions of the wood. The major effect of acetylation of wood, therefore, is to stabilize acoustic properties. The technology can be applied to almost any wood though more easily to permeable types so non-traditional wood species can be used. A violin, a piano soundboard, a guitar, a recorder, a bagpipe chanter, and trumpet and trombone mouthpieces have been made using acetylated wood with very positive results. Several more wooden instruments made from acetylated wood are presently being made for further testing and early market development.展开更多
To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three pro...To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three provinces were divided in sound speed,sound speed ratio,porosity,wet bulk density,and maximum shear strength.ProvinceⅠhad lower sound speed and sound speed ratio(<1.04),high porosity,and low wet bulk density.ProvinceⅡhad higher sound speed and sound speed ratio(>1.04),low porosity,and high wet bulk density.ProvinceⅢhad the lowest sound speed and sound speed ratio(0.99),highest porosity(81%),and lowest wet bulk density(1.34 g/cm^(3)).The distribution pattern indicates that sediment movement,sediment source,topography,and hydrodynamic conditions influenced the distribution of acoustic and physical properties.Furthermore,we investigated the relationship of the maximum shear strength to the porosity and wet bulk density,and found that the maximum shear strength was proportional to both the porosity and wet bulk density.This finding has significant implications for ocean engineering applications.展开更多
Aim To research on a stable microbubble with good acoustic properties and excellent imaging enhancing effect, and to make it to be a promising agent for the enhancement of ultrasound imaging in the ultrasound diagnosi...Aim To research on a stable microbubble with good acoustic properties and excellent imaging enhancing effect, and to make it to be a promising agent for the enhancement of ultrasound imaging in the ultrasound diagnosis of cardiovascular system diseases. Methods The morphology, size and zeta potential of lipid-coated microbubbles (LCM), the acoustic properties of backscatter, and the second harmonic scatter of LCM were determined. Furthermore, the relationship between the concentrations and the amplitude values of the second harmonic was investigated by testing the intensities of the second harmonic at different concentrations. The imaging effect of LCM was also studied in vitro. Results The mean diameter of LCM was 3.38 μm with 95% of the bubbles under 5 μm. The scatter signal generated by microbubbles was observed under different concentrations in the bistatic modes while the position of transmitting transducer and receiving transducer was orthogonal. The intensity of the second harmonic scatter fell with the decrease of microbubble concentration. The increase rate of the second harmonic amplitude values generated by the microbubbles versus that by physiological saline was linear with the natural logarithm of bubble concentrations. The LCM could enhance the ultrasound image of thrombus. Conclusion The LCM exhibited good physical state and acoustic properties, which could increase the imaging quality.展开更多
Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weig...Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea.展开更多
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high fr...In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.展开更多
A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in exist...A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in existence. By using a hydraulic driving device, the system drives four acoustic probes into sediments at an even speed, and this decreases disturbances to sediments introduced by the penetration of acoustic probes. By means of the special design of the central control unit, the system can work full-automatically and the data are stored self-containedly, and this avoids the requirement of real-time remote controlling from the ship. Its operating water depth, measuring depth and measuring frequency is 500m, 1.0m and 30kHz respectively. A set of in situ sound speeds and attenuation coefficients of sediments are obtained at 40 stations using the system. The results confirm that the data obtained by the in situ sediment acoustic system are accurate and credible.展开更多
Interdigitated transducers(IDTs)were originally designed as delay lines for radars.Half a century later,they have found new life as actuators for microfluidic systems.By generating strong acoustic fields,they trigger ...Interdigitated transducers(IDTs)were originally designed as delay lines for radars.Half a century later,they have found new life as actuators for microfluidic systems.By generating strong acoustic fields,they trigger nonlinear effects that enable pumping and mixing of fluids,and moving particles without contact.However,the transition from signal processing to actuators comes with a range of challenges concerning power density and spatial resolution that have spurred exciting developments in solid-state acoustics and especially in IDT design.Assuming some familiarity with acoustofluidics,this paper aims to provide a tutorial for IDT design and characterization for the purpose of acoustofluidic actuation.It is targeted at a diverse audience of researchers in various fields,including fluid mechanics,acoustics,and microelectronics.展开更多
Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties...Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.展开更多
In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic...In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed.展开更多
Natural materials(e.g. rocks and soils) are porous media, whose microstructures present a wide diversity.They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturat...Natural materials(e.g. rocks and soils) are porous media, whose microstructures present a wide diversity.They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturated with one or more fluids. The prediction of elastic and acoustic properties of porous materials is very important in many fields, such as physics of rocks, reservoir geophysics, civil engineering, construction field and study of the behavior of historical monuments. The aim of this work is to predict the elastic and acoustic behaviors of isotropic porous materials of a solid matrix containing dry, saturated and partially saturated spherical pores. For this, a homogenization technique based on the Morie Tanaka model is presented to connect the elastic and acoustic properties to porosity and degree of water saturation. Non-destructive ultrasonic technique is used to determine the elastic properties from measurements of P-wave velocities. The results obtained show the influence of porosity and degree of water saturation on the effective properties. The various predictions of Morie Tanaka model are then compared with experimental results for the elastic and acoustic properties of calcarenite.展开更多
The dispersion curves of real-valued modes in a fluid-filled borehole are widely used in acoustic well logging.The accurate dispersion curves are the precondition of theoretical analysis and inversion process.Generall...The dispersion curves of real-valued modes in a fluid-filled borehole are widely used in acoustic well logging.The accurate dispersion curves are the precondition of theoretical analysis and inversion process.Generally,these curves can be obtained by solving the conventional dispersion equation for isotropic formations and most vertically transverse isotropy(VTI)formations.However,if the real-valued solutions exist when the radial wavenumbers for the formation quasi-P and quasi-S equals to each other,the existed methods based on the conventional dispersion equation could lead to incorrect results for some VTI formations.Few studies have focused on the influence of these real-valued solutions on dispersion curve extraction.To remove these real-valued solutions,we have proposed a modified dispersion equation and its corresponding solving process.When solving the dispersion equation,the Scholte wave velocity of VTI formation at high frequency is used as the initial guess.The two synthetic examples including fast and slow VTI formations validate that these real-valued solutions do not contribute to the wavefield,and the new dispersion curve extraction method is suitable for all kinds of VTI formations.Consequently,the method can provide reliable dispersion curves for both theoretical analysis and anisotropic parameters inversion in VTI formations.展开更多
An automated system was designed to study in a continuous regime the rheological properties of the care polymeric compositions using the damped vibration method.In a parallel mode measurements of rheological and acous...An automated system was designed to study in a continuous regime the rheological properties of the care polymeric compositions using the damped vibration method.In a parallel mode measurements of rheological and acoustic characteristics of the care compositions were made on the basis of epoxy resin.Dependencies of shear modulus,viscosity,the sound speed,and the damping coefficient as functions of polymerization were presented.Dynamics of spectral characteristics of acoustic signals in the polymerization were investigated.Comparison of the experimental results obtained reveals that the dynamics of the variation of acoustic and rheological properties is significantly different.The major change of acoustic characteristics occurs in the initial stage of the solid state formation when a transition from a liquid-to-gel like state takes place.Rheological characteristics vary dramatically at the crossover from a high-viscosity to solid state.In the frequency dependencies of an acoustic signal a number of essential features were observed.展开更多
The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-b...The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.展开更多
In recent decades,low-frequency(LF)experiments based on the forced-oscillation(FO)method have become common practice in many rock physics laboratories for measuring the elastic and anelastic properties of rocks.Howeve...In recent decades,low-frequency(LF)experiments based on the forced-oscillation(FO)method have become common practice in many rock physics laboratories for measuring the elastic and anelastic properties of rocks.However,the use of the electronic displacement sensors in traditional acquisition systems of FO devices such as conventional capacitive transducers or strain gauges seriously limits both the efficiency and productivity of LF measurements,and,due to the limited contact area of the displacement sensors with a sample under test,increases the requirements for sample homogeneity.In this paper,we present the first results obtained in the development of a new laboratory method elaborated to measure the elastic properties of solids.The method is a further development of the FO method where traditional data acquisition is replaced by acquisition based on fiber-optic distributed acoustic sensing(DAS)technology.The new method was tested in a laboratory study using two FO setups designed for measurements under uniaxial and confining pressures.The study was carried out on a sample made from polymethyl methacrylate(PMMA)and an aluminium standard,first under uniaxial pressure at FO frequencies of 1,10,30,60 and 100 Hz,and then under confining pressure at an FO frequency of 1 Hz.Both uniaxial and confining pressures were equal to 10 MPa,and the strain in the PMMA sample in all measurements did not exceed 4×10^(-8).The performance of DAS acquisition was compared with the measurements conducted at a strain of 1×10^(-6) using the traditional FO method based on the use of semiconductor strain gauges and the ultrasonic method.The results of the DAS measurements are in good agreement with the FO measurements carried out using semiconductor strain gauges and with the literature data.展开更多
The magnetostriction and acoustics properties of Tb1-x xDyx (Fe1-yMny) 1.95 alloys and their application to sonar transducers were studied. The following results were obtained from experiments. When the applied magn...The magnetostriction and acoustics properties of Tb1-x xDyx (Fe1-yMny) 1.95 alloys and their application to sonar transducers were studied. The following results were obtained from experiments. When the applied magnetic field intensity is ≥ 800 kA·m-1, the magnetostrictive coefficients are (1300- 1800)× 10-6. The electromechanical coupling factors are 0.84-0.93, the sound velocities 2168-2856 m·s-1 and the Young's modulus (5.06- 7.26) ×10 N·m-2. A sonar transducer made of the alloy rod, which has a total length of 300 mm and a total weight of 2 kg, is characterized by 2.4 kHz specified resonant frequency, 1 kHz frequency band, 173 kB current response and 45% electroacoustic efficiency.展开更多
The mechanical performance of knitted fabric was significantly affected by loop density and geometries. Knitted fabric composites occupy a special position in the field of engineering materials because of their easy t...The mechanical performance of knitted fabric was significantly affected by loop density and geometries. Knitted fabric composites occupy a special position in the field of engineering materials because of their easy to form complex components and high impact energy absorption. But Knitted fabric composites have low in-plane tensile strength because the yarns are in a loop structure in the materials. Sound insulation requirements in automobiles, manufacturing environments, and equipment, generating higher sound pressure drive the need to develop more efficient and economical ways of producing sound absorption materials. The knitted fabric based acoustic materials were produced from cut wastes from different garment industries for their sound absorption property test as per the method described in ASTM E 1050. The acoustic performance of knitted fabrics was measured by independent tube methods for sound waves of 1000-6000 Hz. It is observed that the knitted fabrics acoustic materials prepared from waste materials showed high sound absorption than woven fabrics made from the same synthetic fibers. Moreover, the test revealed that blended knitted fabric had a better sound absorption property.展开更多
In this paper, by using functional analysis and integral equation method, we obtain some results about the properties of far field of acoustic waves in an inhomogeneous medium. And we also discuss some ill-posed inver...In this paper, by using functional analysis and integral equation method, we obtain some results about the properties of far field of acoustic waves in an inhomogeneous medium. And we also discuss some ill-posed inverse scattering problems by Tikhonov regularization method.展开更多
The qing was an important percussion musical instrument in ancient China. Qing is a stone plate with special form. The vibration of qing is studied both theoretically and experimentally in this paper. The vibrational ...The qing was an important percussion musical instrument in ancient China. Qing is a stone plate with special form. The vibration of qing is studied both theoretically and experimentally in this paper. The vibrational modes of a qing have been calculated by using finite element method in accordance with the experimental results. As compared with a rectangular plate, the frequency relations between the overtones are varied with the changes of shape of the qing. From the analysis, it is possible to speculate upon the idea of design of the qing in ancient time. In order to confirm the idea, the sound of qing has been simulated by computer and judged subjectively. An empirical formula for the calculation of the pitch frequency of qing sound is given.展开更多
The acoustic performance of the structure for measuring cavitation noise is theoretically analysed, and two judging criteria of the acoustic performance of STW (sound transmission window) are presented in this paper. ...The acoustic performance of the structure for measuring cavitation noise is theoretically analysed, and two judging criteria of the acoustic performance of STW (sound transmission window) are presented in this paper. One is of impedance matching between working liquid and STW:ρ1C1 = ρ2C2. The other is of maximum frequency (or minimum wave length) of cavitation noise spectrum: fmax&le c/60D (or λmin/D ≥ 60). If either of the criteria is met reliable measured results of cavitation noise will be obtained. The theoretical results are verified through experiments. According to the criteria, the paper analyses the acoustic performance of routinely used plexiglass STW. The results show that in the research of clear water cavitation the impedance ratio, 2. 18, does not satisfy ρ1C1 = ρ2C2, and fmax&le C/60D hardly holds for actual cavitation noise spectrum. Therefore, plexiglass STW is not good enough for sound transmission. From this point of view, polyethylene is better sound transmission material than plexiglass.展开更多
文摘Many of the traditional woods used for musical instruments have been selected not only for their natural beauty but for the high content of waxes and resins that help increase water repellency of the wood but have little or no effect on stabilizing dimensions or vibrational properties. Moisture changes have a great negative effect on both the musical quality of wooden musical instruments and limit the length of time they can be played without loss of musical quality. It is possible to stabilize both the wood and the vibrational properties by chemically modifying the wood. One technology that can do this is the reaction of wood with acetic anhydride. Acetylation of wood slightly increases density, and slightly (about 5%) reduces both sound velocity and sound absorption when compared to unreactedwood. Acetylation does not change the acoustic converting efficiency. Acetylation reduces the amount of moisture in the cell wall decreasing the effect of moisture on the viscose properties of wood. This allows a wooded musical instrument to be played longer without having to let it dry out. This gives an instrument made from acetylated wood a greater range of moisture conditions it can be played in without losing tone quality. Acetylation also greatly stabilizes the physical dimensions of the wood. The major effect of acetylation of wood, therefore, is to stabilize acoustic properties. The technology can be applied to almost any wood though more easily to permeable types so non-traditional wood species can be used. A violin, a piano soundboard, a guitar, a recorder, a bagpipe chanter, and trumpet and trombone mouthpieces have been made using acetylated wood with very positive results. Several more wooden instruments made from acetylated wood are presently being made for further testing and early market development.
基金Supported by the National Key R&D Program of China(No.2021YFF0501202)the National Natural Science Foundation of China(Nos.12374428,42176191,U22A2012,12304507)+2 种基金the Guangdong Special Support Key Team Program(Nos.2019BT02H594,GML2021GD0810)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP232)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24lgqb006)。
文摘To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three provinces were divided in sound speed,sound speed ratio,porosity,wet bulk density,and maximum shear strength.ProvinceⅠhad lower sound speed and sound speed ratio(<1.04),high porosity,and low wet bulk density.ProvinceⅡhad higher sound speed and sound speed ratio(>1.04),low porosity,and high wet bulk density.ProvinceⅢhad the lowest sound speed and sound speed ratio(0.99),highest porosity(81%),and lowest wet bulk density(1.34 g/cm^(3)).The distribution pattern indicates that sediment movement,sediment source,topography,and hydrodynamic conditions influenced the distribution of acoustic and physical properties.Furthermore,we investigated the relationship of the maximum shear strength to the porosity and wet bulk density,and found that the maximum shear strength was proportional to both the porosity and wet bulk density.This finding has significant implications for ocean engineering applications.
文摘Aim To research on a stable microbubble with good acoustic properties and excellent imaging enhancing effect, and to make it to be a promising agent for the enhancement of ultrasound imaging in the ultrasound diagnosis of cardiovascular system diseases. Methods The morphology, size and zeta potential of lipid-coated microbubbles (LCM), the acoustic properties of backscatter, and the second harmonic scatter of LCM were determined. Furthermore, the relationship between the concentrations and the amplitude values of the second harmonic was investigated by testing the intensities of the second harmonic at different concentrations. The imaging effect of LCM was also studied in vitro. Results The mean diameter of LCM was 3.38 μm with 95% of the bubbles under 5 μm. The scatter signal generated by microbubbles was observed under different concentrations in the bistatic modes while the position of transmitting transducer and receiving transducer was orthogonal. The intensity of the second harmonic scatter fell with the decrease of microbubble concentration. The increase rate of the second harmonic amplitude values generated by the microbubbles versus that by physiological saline was linear with the natural logarithm of bubble concentrations. The LCM could enhance the ultrasound image of thrombus. Conclusion The LCM exhibited good physical state and acoustic properties, which could increase the imaging quality.
基金supported financially by the National Key R&D Program of China(No.2017YFC0307600)the Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0207)+3 种基金the National Natural Science Foundation of China(No.41906067)the China Postdoctoral Science Foundation(No.2018M632634)the Natural Science Foundation of Shandong Province of China(No.ZR2019BD051)the Marine Geological Survey Program(Nos.DD20190221 and DD20190231)。
文摘Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41330965 and 41527809)
文摘In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.
文摘A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in existence. By using a hydraulic driving device, the system drives four acoustic probes into sediments at an even speed, and this decreases disturbances to sediments introduced by the penetration of acoustic probes. By means of the special design of the central control unit, the system can work full-automatically and the data are stored self-containedly, and this avoids the requirement of real-time remote controlling from the ship. Its operating water depth, measuring depth and measuring frequency is 500m, 1.0m and 30kHz respectively. A set of in situ sound speeds and attenuation coefficients of sediments are obtained at 40 stations using the system. The results confirm that the data obtained by the in situ sediment acoustic system are accurate and credible.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.12004078 and 61874033the State Key Lab of ASIC and Systems,the Science and Technology Commission of Shanghai Municipality Award/Grant Nos.22QA1400900 and 22WZ2502200Fudan University 2021MS001,2021MS002 and 2020KF006.
文摘Interdigitated transducers(IDTs)were originally designed as delay lines for radars.Half a century later,they have found new life as actuators for microfluidic systems.By generating strong acoustic fields,they trigger nonlinear effects that enable pumping and mixing of fluids,and moving particles without contact.However,the transition from signal processing to actuators comes with a range of challenges concerning power density and spatial resolution that have spurred exciting developments in solid-state acoustics and especially in IDT design.Assuming some familiarity with acoustofluidics,this paper aims to provide a tutorial for IDT design and characterization for the purpose of acoustofluidic actuation.It is targeted at a diverse audience of researchers in various fields,including fluid mechanics,acoustics,and microelectronics.
文摘Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.
基金the financial support provided by the National Natural Science Foundation of China(Grant Nos.42174133 and 41676032)China Geological Survey(Grant No.DD20190234)。
文摘In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed.
文摘Natural materials(e.g. rocks and soils) are porous media, whose microstructures present a wide diversity.They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturated with one or more fluids. The prediction of elastic and acoustic properties of porous materials is very important in many fields, such as physics of rocks, reservoir geophysics, civil engineering, construction field and study of the behavior of historical monuments. The aim of this work is to predict the elastic and acoustic behaviors of isotropic porous materials of a solid matrix containing dry, saturated and partially saturated spherical pores. For this, a homogenization technique based on the Morie Tanaka model is presented to connect the elastic and acoustic properties to porosity and degree of water saturation. Non-destructive ultrasonic technique is used to determine the elastic properties from measurements of P-wave velocities. The results obtained show the influence of porosity and degree of water saturation on the effective properties. The various predictions of Morie Tanaka model are then compared with experimental results for the elastic and acoustic properties of calcarenite.
基金financial support provided by the National Natural Science Foundation of China(Grant No.42104127 and 42004117)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.162301192696).
文摘The dispersion curves of real-valued modes in a fluid-filled borehole are widely used in acoustic well logging.The accurate dispersion curves are the precondition of theoretical analysis and inversion process.Generally,these curves can be obtained by solving the conventional dispersion equation for isotropic formations and most vertically transverse isotropy(VTI)formations.However,if the real-valued solutions exist when the radial wavenumbers for the formation quasi-P and quasi-S equals to each other,the existed methods based on the conventional dispersion equation could lead to incorrect results for some VTI formations.Few studies have focused on the influence of these real-valued solutions on dispersion curve extraction.To remove these real-valued solutions,we have proposed a modified dispersion equation and its corresponding solving process.When solving the dispersion equation,the Scholte wave velocity of VTI formation at high frequency is used as the initial guess.The two synthetic examples including fast and slow VTI formations validate that these real-valued solutions do not contribute to the wavefield,and the new dispersion curve extraction method is suitable for all kinds of VTI formations.Consequently,the method can provide reliable dispersion curves for both theoretical analysis and anisotropic parameters inversion in VTI formations.
文摘An automated system was designed to study in a continuous regime the rheological properties of the care polymeric compositions using the damped vibration method.In a parallel mode measurements of rheological and acoustic characteristics of the care compositions were made on the basis of epoxy resin.Dependencies of shear modulus,viscosity,the sound speed,and the damping coefficient as functions of polymerization were presented.Dynamics of spectral characteristics of acoustic signals in the polymerization were investigated.Comparison of the experimental results obtained reveals that the dynamics of the variation of acoustic and rheological properties is significantly different.The major change of acoustic characteristics occurs in the initial stage of the solid state formation when a transition from a liquid-to-gel like state takes place.Rheological characteristics vary dramatically at the crossover from a high-viscosity to solid state.In the frequency dependencies of an acoustic signal a number of essential features were observed.
基金Supported by the Guangdong Special Support Key Team Program(No.2019BT02H594)the National Key R&D Program of China(No.2021YFF0501202)+5 种基金the Youth Innovation Promotion Association CASthe National Natural Science Foundation of China(Nos.41706045,42176191,41773039,U22A2012)the Rising Star Foundation of the Integrated Research Center for Islands and Reefs Sciences,CAS(No.ZDRW-XH-2021-2-03)the CAS Key Laboratory of Science and Technology on Operational Oceanography Open Project Funding(No.OOST2021-01)the Guangdong Natural Science Foundation(No.2017A030313237)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Nos.SKLA202007,SKLA202106)。
文摘The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.
文摘In recent decades,low-frequency(LF)experiments based on the forced-oscillation(FO)method have become common practice in many rock physics laboratories for measuring the elastic and anelastic properties of rocks.However,the use of the electronic displacement sensors in traditional acquisition systems of FO devices such as conventional capacitive transducers or strain gauges seriously limits both the efficiency and productivity of LF measurements,and,due to the limited contact area of the displacement sensors with a sample under test,increases the requirements for sample homogeneity.In this paper,we present the first results obtained in the development of a new laboratory method elaborated to measure the elastic properties of solids.The method is a further development of the FO method where traditional data acquisition is replaced by acquisition based on fiber-optic distributed acoustic sensing(DAS)technology.The new method was tested in a laboratory study using two FO setups designed for measurements under uniaxial and confining pressures.The study was carried out on a sample made from polymethyl methacrylate(PMMA)and an aluminium standard,first under uniaxial pressure at FO frequencies of 1,10,30,60 and 100 Hz,and then under confining pressure at an FO frequency of 1 Hz.Both uniaxial and confining pressures were equal to 10 MPa,and the strain in the PMMA sample in all measurements did not exceed 4×10^(-8).The performance of DAS acquisition was compared with the measurements conducted at a strain of 1×10^(-6) using the traditional FO method based on the use of semiconductor strain gauges and the ultrasonic method.The results of the DAS measurements are in good agreement with the FO measurements carried out using semiconductor strain gauges and with the literature data.
基金the Rare Earth Office of MMI and the National Natural Science Foundation of China!59501008
文摘The magnetostriction and acoustics properties of Tb1-x xDyx (Fe1-yMny) 1.95 alloys and their application to sonar transducers were studied. The following results were obtained from experiments. When the applied magnetic field intensity is ≥ 800 kA·m-1, the magnetostrictive coefficients are (1300- 1800)× 10-6. The electromechanical coupling factors are 0.84-0.93, the sound velocities 2168-2856 m·s-1 and the Young's modulus (5.06- 7.26) ×10 N·m-2. A sonar transducer made of the alloy rod, which has a total length of 300 mm and a total weight of 2 kg, is characterized by 2.4 kHz specified resonant frequency, 1 kHz frequency band, 173 kB current response and 45% electroacoustic efficiency.
文摘The mechanical performance of knitted fabric was significantly affected by loop density and geometries. Knitted fabric composites occupy a special position in the field of engineering materials because of their easy to form complex components and high impact energy absorption. But Knitted fabric composites have low in-plane tensile strength because the yarns are in a loop structure in the materials. Sound insulation requirements in automobiles, manufacturing environments, and equipment, generating higher sound pressure drive the need to develop more efficient and economical ways of producing sound absorption materials. The knitted fabric based acoustic materials were produced from cut wastes from different garment industries for their sound absorption property test as per the method described in ASTM E 1050. The acoustic performance of knitted fabrics was measured by independent tube methods for sound waves of 1000-6000 Hz. It is observed that the knitted fabrics acoustic materials prepared from waste materials showed high sound absorption than woven fabrics made from the same synthetic fibers. Moreover, the test revealed that blended knitted fabric had a better sound absorption property.
基金Shanghai Youth Science FoundationSupported in Part by Shanghai ScienceTechnology Development Foundation
文摘In this paper, by using functional analysis and integral equation method, we obtain some results about the properties of far field of acoustic waves in an inhomogeneous medium. And we also discuss some ill-posed inverse scattering problems by Tikhonov regularization method.
文摘The qing was an important percussion musical instrument in ancient China. Qing is a stone plate with special form. The vibration of qing is studied both theoretically and experimentally in this paper. The vibrational modes of a qing have been calculated by using finite element method in accordance with the experimental results. As compared with a rectangular plate, the frequency relations between the overtones are varied with the changes of shape of the qing. From the analysis, it is possible to speculate upon the idea of design of the qing in ancient time. In order to confirm the idea, the sound of qing has been simulated by computer and judged subjectively. An empirical formula for the calculation of the pitch frequency of qing sound is given.
文摘The acoustic performance of the structure for measuring cavitation noise is theoretically analysed, and two judging criteria of the acoustic performance of STW (sound transmission window) are presented in this paper. One is of impedance matching between working liquid and STW:ρ1C1 = ρ2C2. The other is of maximum frequency (or minimum wave length) of cavitation noise spectrum: fmax&le c/60D (or λmin/D ≥ 60). If either of the criteria is met reliable measured results of cavitation noise will be obtained. The theoretical results are verified through experiments. According to the criteria, the paper analyses the acoustic performance of routinely used plexiglass STW. The results show that in the research of clear water cavitation the impedance ratio, 2. 18, does not satisfy ρ1C1 = ρ2C2, and fmax&le C/60D hardly holds for actual cavitation noise spectrum. Therefore, plexiglass STW is not good enough for sound transmission. From this point of view, polyethylene is better sound transmission material than plexiglass.