In this Letter,we realized the phonon-assisted Q-switched laser operation in Yb:YCOB crystal.Differing from previous laser wavelengths below 1.1μm,we extended the wavelength to 1130 nm by amplifying multiphonon-assis...In this Letter,we realized the phonon-assisted Q-switched laser operation in Yb:YCOB crystal.Differing from previous laser wavelengths below 1.1μm,we extended the wavelength to 1130 nm by amplifying multiphonon-assisted electronic transitions.At a repetition rate of 0.1 k Hz,the laser output power was 82 m W with a pulse width of 466.1 ns,corresponding to a high peak power of 1.76 k W and a single pulse energy of 0.82 m J,respectively.To the best of our knowledge,this represents the highest pulse energy among all Yb^(3+)-doped crystal lasers at the wavelength beyond 1.1μm.Such a large pulse energy could be explained by the laser rate-equation theory.These results indicated that the electron-phonon coupling effect not only extends the lasing wavelengths but also enables a fast temporal response to support nanosecond,picosecond,even femtosecond pulse laser operation.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nano...A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nanoseconds pulse duration are achieved at the repetition rate of 1 - 50 kHz. When the repetition rate is 1 kHz, the pulse energy is 0.93 mJ with the pulse duration of 132 ns. Meanwhile, the profile of laser pulses shows some mode-locking phenomena, the mechanism of the phenomena is discussed.展开更多
We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is end...We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.展开更多
We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that t...We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.展开更多
We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pu...We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pump source.The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0%slope efficiency with respect to the absorbed pump power.In the AO Q-switched regime,at a pulse repetition frequency of 5 kHz,the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width,resulting in a calculated peak power of 100 k W.In addition,at the maximum output level,the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanuf...Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing.展开更多
A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The t...A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).展开更多
An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as o...An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as one of the potential observational infrastructures where the acousto-optical spectrometer can be successfully used. A summary on the study of molecular gas in relatively old (age > 10 Myr) disks around main sequence stars is provided. We have identified this as one of the science cases in which the proposed processor can have a big impact. Then we put forward triple product acousto-optical processor is able to realize algorithm of the space-and-time integrating, which is desirable for a wideband spectrum analysis of radio-wave signals with an improved resolution providing the resolution power of about 105 - 106. It includes 1D-acousto-optic cells as the input devices for a 2D-optical data processing. The importance of this algorithm is based on exploiting the chirp Z-transform technique providing a 2D-Fourier transform of the input signals. The system produces the folded spectrum, accumulating advantages of both space and time integrating. Its frequency bandwidth is practically equal to the bandwidth of transducers inherent in acousto-optical cells. Then, similar processor is able to provide really high frequency resolution, which is practically equal to the reciprocal of the CCD-matrix photo-detector integration time. Here, the current state of developing the triple product acousto-optical processor in frames of the astrophysical instrumentation is shortly discussed.展开更多
The basics and applications of acousto-optic devices are described.The applications include acousto-optic spectrum analyzer,acousto-optic deflector,acousto-optic processors and acousto-optic digital matrix computer.
Acousto-optic system for performing basic operations of vector-matrix multiplication with digital(16-bit)accuracy are described.The system comprised of two multi-transducer Bragg cells that can perform at least 1×...Acousto-optic system for performing basic operations of vector-matrix multiplication with digital(16-bit)accuracy are described.The system comprised of two multi-transducer Bragg cells that can perform at least 1×10 8 operation/s of basic vector-matrix multiplication with digital (16-bit ) accuracy and which is simple and compact.展开更多
The system of Integrated-Optics Acousto-Optic RF Spectrum Analyzer (IOAOSA)consists of a laser diode, an Acousto-Optic (A-O) modulator, geodesic lenses and CCD detectorarray. The optical signal projected on the CCD ar...The system of Integrated-Optics Acousto-Optic RF Spectrum Analyzer (IOAOSA)consists of a laser diode, an Acousto-Optic (A-O) modulator, geodesic lenses and CCD detectorarray. The optical signal projected on the CCD array is converted into electrical signal andprocessed by the signal processing center which consists of a TMS 32010 system and an IBM-PC.The TMS 32010 with very high speed is used in a microcomputer system. A cycle sample methodis adopted to collect the data of the CCD video signal, sampling one per 40-point. After theprocessing, the frequency bandwidth, the resolution and the dynamic range of the system aremeasured to be 100 MHz, 8 MHz and 20 dB, respectively.展开更多
The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design...The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency precision of 1 MHz, the detecting frequency error of 0.58 MHz, detecting responsivity of 90 dBm and bandwidth of 50 MHz.展开更多
The transfer function of the optical splitting system of the acousto-optic tunable filter (AOTF) is deduced to be a reference to optical design. The characteristic matrix ( transfer function) of AOTF is used to de...The transfer function of the optical splitting system of the acousto-optic tunable filter (AOTF) is deduced to be a reference to optical design. The characteristic matrix ( transfer function) of AOTF is used to describe quantitatively the characters of polarization elements in the orthogonal polarizing system. According to the characteristic matrix, the included angle of polarizer's transmission direction and polarization analyzer's transmission direction should be 90°. As a result the signal to noise ratio increased about 20 times though the light intensity was reduced to 54.3%,because both the transmittances of polarizer and polarization analyzer are 0. 74, which is an intrinsic character. The orthogonal polarizing method is an effective method to get rid of the influence of zero order light and improve the spectrum resolution and signal-to-noise ratio.展开更多
The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically...The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.展开更多
The paper introduces a new laser interferometry-based method for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculation...The paper introduces a new laser interferometry-based method for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km.展开更多
Optical spectrometer of the Guillermo Haro astrophysical observatory (Mexico) realizes investigations in the visible and near-infrared range 350 - 800 nm and exploits mechanically removable traditional static diffract...Optical spectrometer of the Guillermo Haro astrophysical observatory (Mexico) realizes investigations in the visible and near-infrared range 350 - 800 nm and exploits mechanically removable traditional static diffraction gratings as dispersive elements. There is a set of the static gratings with slit-densities 150 - 600 lines/mm and optical apertures 9 cm × 9 cm that provide the first order spectral resolution from 0.8 to 3.2 A/pixel, respectively. However, the needed mechanical manipulations, namely, replacing the static diffraction gratings with various resolutions and following recalibration of spectrometer within studying even the same object are practically inconvenient and lead to wasting rather expensive observation time. We suggest exploiting an acousto-optical cell, i.e. the dynamic diffraction grating tunable electronically, as dispersive element in that spectrometer. Involving the acousto-optical technique, which can potentially provide electronic control over the spectral resolution and the range of observations, leads to eliminating the abovementioned demerits and improving the efficiency of analysis.展开更多
The designed practically prototype of an advanced acousto-optical radio-wave spectrometer is presented in a view of its application to investigating the Milky Way star formation problems. The potential areas for obser...The designed practically prototype of an advanced acousto-optical radio-wave spectrometer is presented in a view of its application to investigating the Milky Way star formation problems. The potential areas for observations of the cold interstellar medium, wherein such a spectrometer can be exploited successfully at different approximations, are: 1) comparison of the Milky Way case with extragalactic ones at scale of the complete galactic disk;2) global studies of the Galactic spiral arms;and 3) characterization of specific regions like molecular clouds or star clusters. These aspects allow us to suggest that similar instrument will be really useful. The developed prototype of spectrometer is able to realize multi-channel wideband parallel spectrum analysis of very-high-frequency radio-wave signals with an improved resolution power exceeding 103. It includes the 1D-acousto-optic wide-aperture cell as the input device for real-time scale data processing. Here, the current state of developing this acousto-optical spectrometer in frames of the astrophysical instrumentation is briefly discussed, and the data obtained experimentally with a tellurium dioxide crystalline acousto-optical cell are presented. Then, we describe a new technique for more precise spectrum analysis within an algorithm of the collinear wave heterodyning. It implies a two-stage integrated processing, namely, the wave heterodyning of a signal in an acoustically square-law nonlinear medium and then the optical processing in the same solid-state cell. Technical advantage of this approach lies in providing a direct multi-channel parallel processing of ultra-high-frequency radio-wave signals with the resolution power exceeding 104. This algorithm can be realized on a basis of exploiting a large-aperture effective acousto-optical cell, which operates in the Bragg regime and performs the ultra-high-frequency co-directional collinear acoustic wave heterodyning. The general concept and basic conclusions here are confirmed by proof-of-principle experiments with the specially designed cell of a new type based on a lead molybdate crystal.展开更多
The way by which one can make sure the operating mode of the modulation is by observing the Comsol results of the designed model of proposed acousto-optic modulator (AOM). These results include the pressure distributi...The way by which one can make sure the operating mode of the modulation is by observing the Comsol results of the designed model of proposed acousto-optic modulator (AOM). These results include the pressure distribution, sound pressure distribution, stress distribution at piezoelectric, far-field analysis that describes the diffracted light orders, and electric potential versus light frequency. Throughout the simulating process of modulator operating using Comsol, it begins when the RF is power by a voltage of 100 V, the light is then split into first ordered diffraction, which implies that the modulator is in the operating mode. The use of semiconductor materials is due to its smaller gap that easily transfers the energy that leads to generating first order diffraction when they provided a voltage power. It mentioned that zero order diffraction indicates the modulator does not run;other orders are appearing with increasing the frequency of light leading to decrease of the efficiency of the modulator performance.展开更多
基金the National Natural Science Foundation of China(Nos.52372010,92163207,and 52025021)the National Key Research and Development Program of China(Nos.2021YFA0717800 and 2021YFB3601504)。
文摘In this Letter,we realized the phonon-assisted Q-switched laser operation in Yb:YCOB crystal.Differing from previous laser wavelengths below 1.1μm,we extended the wavelength to 1130 nm by amplifying multiphonon-assisted electronic transitions.At a repetition rate of 0.1 k Hz,the laser output power was 82 m W with a pulse width of 466.1 ns,corresponding to a high peak power of 1.76 k W and a single pulse energy of 0.82 m J,respectively.To the best of our knowledge,this represents the highest pulse energy among all Yb^(3+)-doped crystal lasers at the wavelength beyond 1.1μm.Such a large pulse energy could be explained by the laser rate-equation theory.These results indicated that the electron-phonon coupling effect not only extends the lasing wavelengths but also enables a fast temporal response to support nanosecond,picosecond,even femtosecond pulse laser operation.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金the National Key Basic Research Project of China.
文摘A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nanoseconds pulse duration are achieved at the repetition rate of 1 - 50 kHz. When the repetition rate is 1 kHz, the pulse energy is 0.93 mJ with the pulse duration of 132 ns. Meanwhile, the profile of laser pulses shows some mode-locking phenomena, the mechanism of the phenomena is discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274188 and 11574170
文摘We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.
基金supported by the Natural Science Foundation of Anhui Province (Grant No. 2208085QF217)the National Natural Science Foundation of China (Grant No. 52102012)the Hefei Institutes of Physical Science (HFIPS) Director’s Fund (Grant No. YZJJ2022QN08)。
文摘We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51572053,61805209 and U1530152
文摘We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pump source.The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0%slope efficiency with respect to the absorbed pump power.In the AO Q-switched regime,at a pulse repetition frequency of 5 kHz,the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width,resulting in a calculated peak power of 100 k W.In addition,at the maximum output level,the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
基金National Key Research and Development Program of China(2021YFF0502700)National Natural Science Foundation of China(52275429,62205117)+4 种基金Innovation project of Optics Valley Laboratory(OVL2021ZD002)Hubei Provincial Natural Science Foundation of China(2022CFB792)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)West Light Foundation of the Chinese Academy of Sciences(xbzg-zdsys-202206)Knowledge Innovation Program of Wuhan-Shuguang。
文摘Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing.
基金Supported by the National Key Scientific Instrument and Equipment Development Projects of China under Grant No 81127901the National Natural Science Foundation of China under Grant Nos 61372017 and 30970828
文摘A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).
文摘An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as one of the potential observational infrastructures where the acousto-optical spectrometer can be successfully used. A summary on the study of molecular gas in relatively old (age > 10 Myr) disks around main sequence stars is provided. We have identified this as one of the science cases in which the proposed processor can have a big impact. Then we put forward triple product acousto-optical processor is able to realize algorithm of the space-and-time integrating, which is desirable for a wideband spectrum analysis of radio-wave signals with an improved resolution providing the resolution power of about 105 - 106. It includes 1D-acousto-optic cells as the input devices for a 2D-optical data processing. The importance of this algorithm is based on exploiting the chirp Z-transform technique providing a 2D-Fourier transform of the input signals. The system produces the folded spectrum, accumulating advantages of both space and time integrating. Its frequency bandwidth is practically equal to the bandwidth of transducers inherent in acousto-optical cells. Then, similar processor is able to provide really high frequency resolution, which is practically equal to the reciprocal of the CCD-matrix photo-detector integration time. Here, the current state of developing the triple product acousto-optical processor in frames of the astrophysical instrumentation is shortly discussed.
文摘The basics and applications of acousto-optic devices are described.The applications include acousto-optic spectrum analyzer,acousto-optic deflector,acousto-optic processors and acousto-optic digital matrix computer.
文摘Acousto-optic system for performing basic operations of vector-matrix multiplication with digital(16-bit)accuracy are described.The system comprised of two multi-transducer Bragg cells that can perform at least 1×10 8 operation/s of basic vector-matrix multiplication with digital (16-bit ) accuracy and which is simple and compact.
基金Supported by National "863" High Technology Plans of China
文摘The system of Integrated-Optics Acousto-Optic RF Spectrum Analyzer (IOAOSA)consists of a laser diode, an Acousto-Optic (A-O) modulator, geodesic lenses and CCD detectorarray. The optical signal projected on the CCD array is converted into electrical signal andprocessed by the signal processing center which consists of a TMS 32010 system and an IBM-PC.The TMS 32010 with very high speed is used in a microcomputer system. A cycle sample methodis adopted to collect the data of the CCD video signal, sampling one per 40-point. After theprocessing, the frequency bandwidth, the resolution and the dynamic range of the system aremeasured to be 100 MHz, 8 MHz and 20 dB, respectively.
文摘The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency precision of 1 MHz, the detecting frequency error of 0.58 MHz, detecting responsivity of 90 dBm and bandwidth of 50 MHz.
文摘The transfer function of the optical splitting system of the acousto-optic tunable filter (AOTF) is deduced to be a reference to optical design. The characteristic matrix ( transfer function) of AOTF is used to describe quantitatively the characters of polarization elements in the orthogonal polarizing system. According to the characteristic matrix, the included angle of polarizer's transmission direction and polarization analyzer's transmission direction should be 90°. As a result the signal to noise ratio increased about 20 times though the light intensity was reduced to 54.3%,because both the transmittances of polarizer and polarization analyzer are 0. 74, which is an intrinsic character. The orthogonal polarizing method is an effective method to get rid of the influence of zero order light and improve the spectrum resolution and signal-to-noise ratio.
基金National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC),Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)+3 种基金National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi’1331KSC’。
文摘The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.
文摘The paper introduces a new laser interferometry-based method for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km.
文摘Optical spectrometer of the Guillermo Haro astrophysical observatory (Mexico) realizes investigations in the visible and near-infrared range 350 - 800 nm and exploits mechanically removable traditional static diffraction gratings as dispersive elements. There is a set of the static gratings with slit-densities 150 - 600 lines/mm and optical apertures 9 cm × 9 cm that provide the first order spectral resolution from 0.8 to 3.2 A/pixel, respectively. However, the needed mechanical manipulations, namely, replacing the static diffraction gratings with various resolutions and following recalibration of spectrometer within studying even the same object are practically inconvenient and lead to wasting rather expensive observation time. We suggest exploiting an acousto-optical cell, i.e. the dynamic diffraction grating tunable electronically, as dispersive element in that spectrometer. Involving the acousto-optical technique, which can potentially provide electronic control over the spectral resolution and the range of observations, leads to eliminating the abovementioned demerits and improving the efficiency of analysis.
文摘The designed practically prototype of an advanced acousto-optical radio-wave spectrometer is presented in a view of its application to investigating the Milky Way star formation problems. The potential areas for observations of the cold interstellar medium, wherein such a spectrometer can be exploited successfully at different approximations, are: 1) comparison of the Milky Way case with extragalactic ones at scale of the complete galactic disk;2) global studies of the Galactic spiral arms;and 3) characterization of specific regions like molecular clouds or star clusters. These aspects allow us to suggest that similar instrument will be really useful. The developed prototype of spectrometer is able to realize multi-channel wideband parallel spectrum analysis of very-high-frequency radio-wave signals with an improved resolution power exceeding 103. It includes the 1D-acousto-optic wide-aperture cell as the input device for real-time scale data processing. Here, the current state of developing this acousto-optical spectrometer in frames of the astrophysical instrumentation is briefly discussed, and the data obtained experimentally with a tellurium dioxide crystalline acousto-optical cell are presented. Then, we describe a new technique for more precise spectrum analysis within an algorithm of the collinear wave heterodyning. It implies a two-stage integrated processing, namely, the wave heterodyning of a signal in an acoustically square-law nonlinear medium and then the optical processing in the same solid-state cell. Technical advantage of this approach lies in providing a direct multi-channel parallel processing of ultra-high-frequency radio-wave signals with the resolution power exceeding 104. This algorithm can be realized on a basis of exploiting a large-aperture effective acousto-optical cell, which operates in the Bragg regime and performs the ultra-high-frequency co-directional collinear acoustic wave heterodyning. The general concept and basic conclusions here are confirmed by proof-of-principle experiments with the specially designed cell of a new type based on a lead molybdate crystal.
文摘The way by which one can make sure the operating mode of the modulation is by observing the Comsol results of the designed model of proposed acousto-optic modulator (AOM). These results include the pressure distribution, sound pressure distribution, stress distribution at piezoelectric, far-field analysis that describes the diffracted light orders, and electric potential versus light frequency. Throughout the simulating process of modulator operating using Comsol, it begins when the RF is power by a voltage of 100 V, the light is then split into first ordered diffraction, which implies that the modulator is in the operating mode. The use of semiconductor materials is due to its smaller gap that easily transfers the energy that leads to generating first order diffraction when they provided a voltage power. It mentioned that zero order diffraction indicates the modulator does not run;other orders are appearing with increasing the frequency of light leading to decrease of the efficiency of the modulator performance.