期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal Electrochemical Performances of CO_2 Activated Carbon Aerogels for Supercapacitors
1
作者 常丽娟 FU Zhibing +5 位作者 LIU Miao YUAN Lei WEI Jianjun HE Yong wei LIU Xichuan 王朝阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期213-218,共6页
Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized... Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized by scanning electron microscopy (SEM) and the structural properties were determined by N2 adsorption at 77 K. The results show that ACAs have a typical three-dimensional nanonetwork structure composing of cross-linking of carbon nanoparticles. The specific surface area and the total pore volume remarkably increase with increasing activation time while the previous porous structure still remains. The specific capacitance of the 950-10-ACA electrode can reach up to 212.3 F/g in 6 mol/L KOH electrolyte. The results of constant-current charge-discharge testing indicate that the ACAs electrodes present fast charge- discharge rate and long cycle life (about 98% capacitance retained after 3000 charge-discharge cycles at 1.25 mA/cm2). Lower internal resistances can be achieved for 950-10-ACA electrode in KOH electrolyte. Our investigations are very important to improve the wettability and electrochemical performance of electrode for supercapacitors. 展开更多
关键词 activated carbon aerogels specific surface area specific capacitance WETTABILITY cycling performance
下载PDF
Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors
2
作者 袁磊 CHANG Lijuan +5 位作者 FU Zhibing YANG Xi JIAO Xingli TANG Yongjian LIU Xichuan 王朝阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1325-1331,共7页
Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas... Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively. 展开更多
关键词 supercapacitors carbon aerogels ambient pressure drying process activation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部