In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The properties of activated coke(AC)for sintering flue gas purification greatly affect the efficiency of desulfurization and denitration,but they gradually change during cycles.The change in properties of coal-based A...The properties of activated coke(AC)for sintering flue gas purification greatly affect the efficiency of desulfurization and denitration,but they gradually change during cycles.The change in properties of coal-based AC during cycles was studied to clarify the change law and AC optimization index.The AC oxygen content rapidly increases 13.49 to 17.87 wt.%in the early cycles to form phenol,which promotes the denitration rate 55.63%to 78.20%.The denitration performance slowly increases in subsequent cycles becaof the generation of quinone AC slow oxidation.However,the oxygen-containing groups are not conducive to adsorption capacity of AC for NO.The adsorbed NO species which can be replaced SO2 is the main NO species on AC,and its amount decreases with the decrease in CC content of AC.The AC chemical loss leads to the opening of closed pores,expansion of original pores and formation of new pores,causing micropore volume to increase 0.085%to 0.152%,compressive strength to decrease 472 to 336 N,and abrasive resistance to decrease 97.87%to 94.16%during cycles.The low oxygen content and high micropore volume are favorable to the initial desulfurization performance,and the former is more decisive.After a while,the desulfurization rate is linearly positively correlated with the micropore volume regardless of the chemistry.4-h desulfurization rate increased 69.03%to 85.91%during 25 cycles due to the increasing micropore volume.The AC properties change in cycles will greatly affect the desulfurization and denitration rate in the height direction of the flue gas purification system.Selecting the coal-based AC with moderate micropore volume,easy oxidation surface and less original oxygen-containing groups facilitates the better purification efficiency at lower cost for sintering plants.展开更多
The denitrification rate of the cross-flow activated coke flue gas purification facility varies with operational parameters. According to the simulated experiments, the denitrification rate with the height drop of the...The denitrification rate of the cross-flow activated coke flue gas purification facility varies with operational parameters. According to the simulated experiments, the denitrification rate with the height drop of the denitrification unit experiences 100%, rapid decreasing, and gradual rising to the equilibrium. According to the correlation analysis results based on production data, several operational parameters affecting the denitrification rate have been obtained. The denitrification rate has negative relationships with the activated coke bed temperature, the flue gas flow, the H2O content, the SO2 content and the NH3 slip, and has positive relationships with the O2 content, the NOx content, the NH3–NOx molar ratio, the flue gas pressure and the regeneration temperature. Properly increasing the sintering air leakage or the cooling air added into flue gas is beneficial to increase the denitrification rate. Priority should be given to O2, NH3–NOx molar ratio and flue gas flow to improve the denitrification rate. Additionally, a linear model, which had been validated, was developed and can be used to predict and control the denitrification rate.展开更多
The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorp...The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorption tower of the AC flue gas purification system were carried out to first calibrate the thermal desorption characteristics of adsorbed NH_(3) and sulphate and explore the reaction behaviour of NH_(3) with SO_(2) and H_(2)SO_(4). On this basis, some advice for optimising the sulphate generation was put forward to improve the purification efficiency of the AC system. The results show that the temperatures of the desorption of adsorbed NH_(3), the decomposition of (NH_(4))_(2)SO_(4) and NH_(4)HSO_(4) are 224, 276 and 319 ℃, respectively, which lays the foundation for the quantitative analysis of sulphate on AC. Regardless of the NH_(3) amount, only a small portion of H_(2)SO_(4) is converted to sulphate, as the H_(2)SO_(4) deposited in AC pores or agglomerated together could not come into contact with NH_(3). The final reaction product of NH_(3) and SO_(2) is mainly (NH_(4))_(2)SO_(4) which is continuously generated because the newly generated H_(2)SO_(4) is continually exposed to NH_(3), if NH_(3) is enough. The reaction of NH_(3) with H_(2)SO_(4) takes precedence over with NH_(4)HSO_(4). In the initial stages in which H_(2)SO_(4) is exposed to NH_(3), the product is essentially all NH_(4)HSO_(4) as intermediate. Then, it is further converted to (NH_(4))_(2)SO_(4) whose amount reaches equilibrium when the accessible H_(2)SO_(4) is exhausted. All the NH_(3) adsorbed on AC entering the desulphurisation tower generates NH_(4)HSO_(4), but the amount is limited. The remaining SO_(2) entering the denitrification tower mainly generates (NH_(4))_(2)SO_(4);thus, limiting the remaining SO_(2) amount is necessary to guarantee denitrification efficiency. When the NH_(3) injection is changed to the desulphurisation tower, the initial NH_(3) injection rate can be increased to complete the conversion of accessible H_(2)SO_(4) as soon as possible in order to obtain higher denitrification efficiency.展开更多
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金the financial support of Fundamental Research Funds for the Central Universities(Grant No.FRF-IC-18-010).
文摘The properties of activated coke(AC)for sintering flue gas purification greatly affect the efficiency of desulfurization and denitration,but they gradually change during cycles.The change in properties of coal-based AC during cycles was studied to clarify the change law and AC optimization index.The AC oxygen content rapidly increases 13.49 to 17.87 wt.%in the early cycles to form phenol,which promotes the denitration rate 55.63%to 78.20%.The denitration performance slowly increases in subsequent cycles becaof the generation of quinone AC slow oxidation.However,the oxygen-containing groups are not conducive to adsorption capacity of AC for NO.The adsorbed NO species which can be replaced SO2 is the main NO species on AC,and its amount decreases with the decrease in CC content of AC.The AC chemical loss leads to the opening of closed pores,expansion of original pores and formation of new pores,causing micropore volume to increase 0.085%to 0.152%,compressive strength to decrease 472 to 336 N,and abrasive resistance to decrease 97.87%to 94.16%during cycles.The low oxygen content and high micropore volume are favorable to the initial desulfurization performance,and the former is more decisive.After a while,the desulfurization rate is linearly positively correlated with the micropore volume regardless of the chemistry.4-h desulfurization rate increased 69.03%to 85.91%during 25 cycles due to the increasing micropore volume.The AC properties change in cycles will greatly affect the desulfurization and denitration rate in the height direction of the flue gas purification system.Selecting the coal-based AC with moderate micropore volume,easy oxidation surface and less original oxygen-containing groups facilitates the better purification efficiency at lower cost for sintering plants.
基金The authors would like to thank the financial support of Fundamental Research Funds for the Central Universities(Grant No.FRF-IC-18-010).
文摘The denitrification rate of the cross-flow activated coke flue gas purification facility varies with operational parameters. According to the simulated experiments, the denitrification rate with the height drop of the denitrification unit experiences 100%, rapid decreasing, and gradual rising to the equilibrium. According to the correlation analysis results based on production data, several operational parameters affecting the denitrification rate have been obtained. The denitrification rate has negative relationships with the activated coke bed temperature, the flue gas flow, the H2O content, the SO2 content and the NH3 slip, and has positive relationships with the O2 content, the NOx content, the NH3–NOx molar ratio, the flue gas pressure and the regeneration temperature. Properly increasing the sintering air leakage or the cooling air added into flue gas is beneficial to increase the denitrification rate. Priority should be given to O2, NH3–NOx molar ratio and flue gas flow to improve the denitrification rate. Additionally, a linear model, which had been validated, was developed and can be used to predict and control the denitrification rate.
基金support of China Petrochemical Corporation Funding(Sinopec Group,No.321094).
文摘The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorption tower of the AC flue gas purification system were carried out to first calibrate the thermal desorption characteristics of adsorbed NH_(3) and sulphate and explore the reaction behaviour of NH_(3) with SO_(2) and H_(2)SO_(4). On this basis, some advice for optimising the sulphate generation was put forward to improve the purification efficiency of the AC system. The results show that the temperatures of the desorption of adsorbed NH_(3), the decomposition of (NH_(4))_(2)SO_(4) and NH_(4)HSO_(4) are 224, 276 and 319 ℃, respectively, which lays the foundation for the quantitative analysis of sulphate on AC. Regardless of the NH_(3) amount, only a small portion of H_(2)SO_(4) is converted to sulphate, as the H_(2)SO_(4) deposited in AC pores or agglomerated together could not come into contact with NH_(3). The final reaction product of NH_(3) and SO_(2) is mainly (NH_(4))_(2)SO_(4) which is continuously generated because the newly generated H_(2)SO_(4) is continually exposed to NH_(3), if NH_(3) is enough. The reaction of NH_(3) with H_(2)SO_(4) takes precedence over with NH_(4)HSO_(4). In the initial stages in which H_(2)SO_(4) is exposed to NH_(3), the product is essentially all NH_(4)HSO_(4) as intermediate. Then, it is further converted to (NH_(4))_(2)SO_(4) whose amount reaches equilibrium when the accessible H_(2)SO_(4) is exhausted. All the NH_(3) adsorbed on AC entering the desulphurisation tower generates NH_(4)HSO_(4), but the amount is limited. The remaining SO_(2) entering the denitrification tower mainly generates (NH_(4))_(2)SO_(4);thus, limiting the remaining SO_(2) amount is necessary to guarantee denitrification efficiency. When the NH_(3) injection is changed to the desulphurisation tower, the initial NH_(3) injection rate can be increased to complete the conversion of accessible H_(2)SO_(4) as soon as possible in order to obtain higher denitrification efficiency.