A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;fi...A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation.The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst.展开更多
Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attentio...Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described.展开更多
Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst...Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.展开更多
The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the ca...The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.展开更多
The conversion of acetone derived from biomass to isobutene has attracted extensive attentions.In comparison with Brønsted acidic catalyst,Lewis acidic catalyst could exhibit a better catalytic performance with a...The conversion of acetone derived from biomass to isobutene has attracted extensive attentions.In comparison with Brønsted acidic catalyst,Lewis acidic catalyst could exhibit a better catalytic performance with a higher isobutene selectivity.However,the catalyst stability remains a key problem for the long-running acetone conversion and the reasons for catalyst deactivation are poorly understood up to now.Herein,the deactivation mechanism of Lewis acidic Y/Beta catalyst during the acetone to isobutene conversion was investigated by various characterization techniques,including acetone-temperature-programmed surface reaction,gas chromatography-mass spectrometry,in situ ultraviolet-visible,and ^(13)C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy.A successive aldol condensation and cyclization were observed as the main side-reactions during the acetone conversion at Lewis acidic Y sites.In comparison with the low reaction temperature,a rapid formation and accumulation of the larger cyclic unsaturated aldehydes/ketones and aromatics could be observed,and which could strongly adsorb on the Lewis acidic sites,and thus cause the catalyst deactivation eventually.After a simple calcination,the coke deposits could be easily removed and the catalytic activity could be well restored.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale app...It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.展开更多
Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostas...Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Catalyst deactivation due to coking is microscopically analyzed,then a model is presented,based upon the analogy between coke deposition and solid aggregation.The Monte Carlo simulation results show that the model ca...Catalyst deactivation due to coking is microscopically analyzed,then a model is presented,based upon the analogy between coke deposition and solid aggregation.The Monte Carlo simulation results show that the model can fit the experimental data in all cases.With this model,the mechanism of formation of coke with different shapes is derived and the relation between the catalytic activity and coke shape is theoretically demonstrated.In addition,the model described in this paper can also be used to simulate the catalyst preparation so as to make more useful and efficient catalysts.The model in this paper is very simple,with only two parameters that indicate the nature of catalyst deactivation.The extension of the model to more complicated systems is also discussed.展开更多
Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TP...Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.展开更多
The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% wa...The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% was obtained on fresh Zn/HZ catalyst, which showed the worst catalytic stability. The cycle of reaction-regeneration significantly modified the texture and acidity of Zn/HZ catalyst, which in turn affected its catalytic performance and coking behavior in methanol conversion to BTX. The residual carbon located on the surface of Zn/HZ catalyst led to the decrease of acid sites and the change on the acid sites distribution, which played an important roles on its activity and deactivation. It was found that the high B/L ratio and the low total acid sites concentration of the Zn/HZ catalyst favored to the high BTX yield and good catalytic stability in methanol conversion.展开更多
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po...The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.展开更多
ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, t...ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor.展开更多
The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene con...The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene conversion presented the sharp decrease due to catalyst deactivation. The deactivation mechanism of betazeolite catalyst was investigated by characterizing the fresh and used catalysts. The XRD, SEM and TEM results show that the crystalline and particle size of the beta-zeolite catalyst almost remained stable during the alkylation cycles. The drop in catalytic activity and benzene conversion could be explained by the TG, BET,NH_3-TPD and GC–MS results. The organic matters mainly consisted of ethylbenzene, p-xylene and 1-ethyl-3-(1-methyl) benzene produced in the benzene alkylation deposited in the catalyst, which strongly reduced the specific surface area of beta-zeolite catalyst. Moreover, during the reaction cycles, the amount of acidity also significantly decreased. As a result, the catalyst deactivation occurred. To maintain the catalytic performance,the catalyst regeneration was carried out by using ethanol rinse and calcination. The deactivated catalyst could be effectively regenerated by the calcination method and the good catalytic performance was obtained.展开更多
The deactivation of a Ni-Mo-W/Al_2O_3 catalyst during ultra-low-sulfur diesel production was investigated in a pilot plant. The reasons of catalyst deactivation were analyzed by the methods of elemental analysis, BET ...The deactivation of a Ni-Mo-W/Al_2O_3 catalyst during ultra-low-sulfur diesel production was investigated in a pilot plant. The reasons of catalyst deactivation were analyzed by the methods of elemental analysis, BET and TG-MS. The results showed that the catalyst deactivation rate was notable at the beginning of run, and then gradually reached a steady state after 448 h. In the initial period the catalyst deactivation may mainly be caused by the formation of the carbon deposits. The carbon deposits blocked the catalyst pores and the accessibility of active center decreased. The TG-MS analysis identified three types of carbon species deposited on the catalysts, viz.: the low temperature carbon deposit with high H/C atomic ratio, the medium temperature carbon deposit, and the high temperature carbon with low H/C atomic ratio. The amount of high temperature carbon deposits on the catalyst determined the overall activity and, therefore the high temperature carbon was a major contributor to the deactivation of Ni-Mo-W catalyst.展开更多
Thermax 700 thermo gravimetric analysis (TGA) instrument is introduced for the investigation of the reaction and deactivation kinetics of Methanol-to-Olefins (MTO) process with SAPO-34 catalyst.By the use of a spe...Thermax 700 thermo gravimetric analysis (TGA) instrument is introduced for the investigation of the reaction and deactivation kinetics of Methanol-to-Olefins (MTO) process with SAPO-34 catalyst.By the use of a special sample basket,the TGA instrument can be viewed as a plug flow fixed-bed reactor,while the weight change of SAPO-34 during reaction can be recorded online.Kinetic data are acquired in the temperature range of 648.2?748.2 K and space velocities of 7.08?35.91 h^-1 (WHSV).Catalyst activity is expressed with average coke content,and selectivity for different products is related as a function of coke content and temperature.Methane is also introduced into the lumping kinetic model,and power exponent function with first-order reaction is adopted for model deduction.Exponential function is tested to give the best fit for catalyst activity and product selectivity with the highest correlation coefficient.The nicely agreed results between experimental and calculated data suggest that the overall kinetic model would be meaningful in both product distribution prediction and reactor simulation.展开更多
Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by wa...Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by water electrolysis using renewable energies like wind and solar power. When it is combusted, only water forms as by-product. However, the efficiency of water electrolysis is hampered by the anodic oxygen evolution reaction(OER) because of the slow kinetics which leads to a high overpotential. Therefore, many catalysts have been developed for OER to facilitate the kinetics and reduce the overpotential. In addition to electrocatalytic activity, the stability of the catalysts is imperative for industrial application and has been intensively studied. In this review, we cover recent findings on the stability and deactivation mechanisms of OER catalysts. We discuss the correlation between OER activity and stability, methodologies and experimental techniques to study the stability and deactivation as well as the deactivation mechanisms, together with factors influencing stability. Furthermore, strategies for stabilizing and regenerating OER catalysts as well as methods to predict stability are summarized. Finally, the review highlights emerging methodologies yet to be explored and future directions of stability studies and the design of highly stable OER catalysts.展开更多
An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation me...An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation method.The deactivation of the two catalysts was studied at 220 C,2 MPa and 2.7 L/h feed flow rate using a fixed bed micro-reactor.The calcined fresh and used catalysts were characterized extensively and different sources of catalyst deactivation were identified.Formation of cobalt-support mixed oxides in the form of xCoO yAl2O3 and cobalt aluminates formation were the main sources of the Co/γ-Al2O3 catalyst deactivation.However sintering and cluster growth of cobalt nano particles are the main sources of the Co/CNTs catalyst deactivation.In the case of the Co/γ-Al2O3 catalyst,after 720 h on stream of continuous FT synthesis the average cobalt nano particles diameter increased from 15.9 to 18.4 nm,whereas,under the same reaction conditions the average cobalt nano particles diameter of the Co/CNTs increased from 11.2 to 17.8 nm.Although,the initial FT activity of the Co/CNTs was 26% higher than that of the Co/γ-Al2O3,the FT activity over the Co/CNTs after 720 h on stream decreased by 49% and that over the Co/γ-Al2O3 by 32%.For the Co/γ-Al2O3 catalyst 6.7% of total activity loss and for the Co/CNTs catalyst 11.6% of total activity loss cannot be recovered after regeneration of the catalyst at the same conditions of the first regeneration step.It is concluded that using CNTs as cobalt catalyst support is beneficial in carbon utilization as compared to γ-Al2O3 support,but the Co/CNTs catalyst is more susceptible for deactivation.展开更多
基金the financial support from the Sinopec Catalyst Co.Ltd.,China。
文摘A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation.The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst.
基金financially supported by the Science Foundation of Donghai Laboratory (Grant No.DH-2022ZY0010)the R&D Project of State Grid Corporation of China (No.5108-202218280A-2-439-XG).
文摘Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described.
基金supported by the National Natural Science Foundation of China(22008212,22078292,21902124)Natural Science Basic Research Planning Shaanxi Province of China(2017ZDJC-29)+2 种基金Key Research and Development Project of Shaanxi Province(2018ZDXM-GY-173)China Postdoctoral Science Foundation(2019 M663848)Open cooperative innovation fund of Xi'an Institute of modern chemistry(SYJJ48).
文摘Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.
基金funded by the National Research Council of Thailand (NRCT)the Second Century Foundation (C2F),Chulalongkorn University,ThailandResearcher Supporting Project RSP2024RR400,King Saud University,Saudi Arabia
文摘The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.
文摘The conversion of acetone derived from biomass to isobutene has attracted extensive attentions.In comparison with Brønsted acidic catalyst,Lewis acidic catalyst could exhibit a better catalytic performance with a higher isobutene selectivity.However,the catalyst stability remains a key problem for the long-running acetone conversion and the reasons for catalyst deactivation are poorly understood up to now.Herein,the deactivation mechanism of Lewis acidic Y/Beta catalyst during the acetone to isobutene conversion was investigated by various characterization techniques,including acetone-temperature-programmed surface reaction,gas chromatography-mass spectrometry,in situ ultraviolet-visible,and ^(13)C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy.A successive aldol condensation and cyclization were observed as the main side-reactions during the acetone conversion at Lewis acidic Y sites.In comparison with the low reaction temperature,a rapid formation and accumulation of the larger cyclic unsaturated aldehydes/ketones and aromatics could be observed,and which could strongly adsorb on the Lewis acidic sites,and thus cause the catalyst deactivation eventually.After a simple calcination,the coke deposits could be easily removed and the catalytic activity could be well restored.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金supported by the Liaoning Provincial Natural Science Foundation Joint Fund for Innovation Capability Improvement(2021-NLTS-12-02)Key Research and Local Service Projects of the Liaoning Provincial Department of Education(LDB2019005).
文摘It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.
文摘Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金Supported by the National Natural Science Foundation of China(No.2 97760 38)
文摘Catalyst deactivation due to coking is microscopically analyzed,then a model is presented,based upon the analogy between coke deposition and solid aggregation.The Monte Carlo simulation results show that the model can fit the experimental data in all cases.With this model,the mechanism of formation of coke with different shapes is derived and the relation between the catalytic activity and coke shape is theoretically demonstrated.In addition,the model described in this paper can also be used to simulate the catalyst preparation so as to make more useful and efficient catalysts.The model in this paper is very simple,with only two parameters that indicate the nature of catalyst deactivation.The extension of the model to more complicated systems is also discussed.
基金supported by the Natural Science Foundation of Shandong Provence of China(ZR2013BM008)
文摘Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.
基金supported by the National Ministry of Education(NCET-10-878)Shaanxi"13115"Innovation Project(2009ZDKJ-70)Shaanxi Key Innovation Project(2011ZKC4-08)
文摘The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% was obtained on fresh Zn/HZ catalyst, which showed the worst catalytic stability. The cycle of reaction-regeneration significantly modified the texture and acidity of Zn/HZ catalyst, which in turn affected its catalytic performance and coking behavior in methanol conversion to BTX. The residual carbon located on the surface of Zn/HZ catalyst led to the decrease of acid sites and the change on the acid sites distribution, which played an important roles on its activity and deactivation. It was found that the high B/L ratio and the low total acid sites concentration of the Zn/HZ catalyst favored to the high BTX yield and good catalytic stability in methanol conversion.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2010AA044401)
文摘The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.
基金supported by the Research Fund from the China Petroleum & Chemical Corporation (Grant No.305025)the National High Technology Research and Development Program of Hainan under Grant No.509013
文摘ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor.
基金Supports by the National Key Research and Development Plan(2016YFB0301503)the Jiangsu Natural Science Foundation for Distinguished Young Scholars(BK20150044)+3 种基金the National Natural Science Foundation of China(91534110,21606124)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(14KJB530004)the Foundation from State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201402,ZK201407)the Technology Innovation Foundation for Science and Technology Enterprises in Jiangsu Province(BC2015008)
文摘The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene conversion presented the sharp decrease due to catalyst deactivation. The deactivation mechanism of betazeolite catalyst was investigated by characterizing the fresh and used catalysts. The XRD, SEM and TEM results show that the crystalline and particle size of the beta-zeolite catalyst almost remained stable during the alkylation cycles. The drop in catalytic activity and benzene conversion could be explained by the TG, BET,NH_3-TPD and GC–MS results. The organic matters mainly consisted of ethylbenzene, p-xylene and 1-ethyl-3-(1-methyl) benzene produced in the benzene alkylation deposited in the catalyst, which strongly reduced the specific surface area of beta-zeolite catalyst. Moreover, during the reaction cycles, the amount of acidity also significantly decreased. As a result, the catalyst deactivation occurred. To maintain the catalytic performance,the catalyst regeneration was carried out by using ethanol rinse and calcination. The deactivated catalyst could be effectively regenerated by the calcination method and the good catalytic performance was obtained.
基金financially supported by the Hydrogenation Process and Hydrogenation Catalyst Laboratory (RIPP, SINOPEC)
文摘The deactivation of a Ni-Mo-W/Al_2O_3 catalyst during ultra-low-sulfur diesel production was investigated in a pilot plant. The reasons of catalyst deactivation were analyzed by the methods of elemental analysis, BET and TG-MS. The results showed that the catalyst deactivation rate was notable at the beginning of run, and then gradually reached a steady state after 448 h. In the initial period the catalyst deactivation may mainly be caused by the formation of the carbon deposits. The carbon deposits blocked the catalyst pores and the accessibility of active center decreased. The TG-MS analysis identified three types of carbon species deposited on the catalysts, viz.: the low temperature carbon deposit with high H/C atomic ratio, the medium temperature carbon deposit, and the high temperature carbon with low H/C atomic ratio. The amount of high temperature carbon deposits on the catalyst determined the overall activity and, therefore the high temperature carbon was a major contributor to the deactivation of Ni-Mo-W catalyst.
文摘Thermax 700 thermo gravimetric analysis (TGA) instrument is introduced for the investigation of the reaction and deactivation kinetics of Methanol-to-Olefins (MTO) process with SAPO-34 catalyst.By the use of a special sample basket,the TGA instrument can be viewed as a plug flow fixed-bed reactor,while the weight change of SAPO-34 during reaction can be recorded online.Kinetic data are acquired in the temperature range of 648.2?748.2 K and space velocities of 7.08?35.91 h^-1 (WHSV).Catalyst activity is expressed with average coke content,and selectivity for different products is related as a function of coke content and temperature.Methane is also introduced into the lumping kinetic model,and power exponent function with first-order reaction is adopted for model deduction.Exponential function is tested to give the best fit for catalyst activity and product selectivity with the highest correlation coefficient.The nicely agreed results between experimental and calculated data suggest that the overall kinetic model would be meaningful in both product distribution prediction and reactor simulation.
基金support by the German Federal Ministry of Education and Research (BMBF) (H2Giga QT1.1 PrometH2eusFKZ 03HY105A)the China Scholarship Council for financial support。
文摘Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by water electrolysis using renewable energies like wind and solar power. When it is combusted, only water forms as by-product. However, the efficiency of water electrolysis is hampered by the anodic oxygen evolution reaction(OER) because of the slow kinetics which leads to a high overpotential. Therefore, many catalysts have been developed for OER to facilitate the kinetics and reduce the overpotential. In addition to electrocatalytic activity, the stability of the catalysts is imperative for industrial application and has been intensively studied. In this review, we cover recent findings on the stability and deactivation mechanisms of OER catalysts. We discuss the correlation between OER activity and stability, methodologies and experimental techniques to study the stability and deactivation as well as the deactivation mechanisms, together with factors influencing stability. Furthermore, strategies for stabilizing and regenerating OER catalysts as well as methods to predict stability are summarized. Finally, the review highlights emerging methodologies yet to be explored and future directions of stability studies and the design of highly stable OER catalysts.
文摘An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation method.The deactivation of the two catalysts was studied at 220 C,2 MPa and 2.7 L/h feed flow rate using a fixed bed micro-reactor.The calcined fresh and used catalysts were characterized extensively and different sources of catalyst deactivation were identified.Formation of cobalt-support mixed oxides in the form of xCoO yAl2O3 and cobalt aluminates formation were the main sources of the Co/γ-Al2O3 catalyst deactivation.However sintering and cluster growth of cobalt nano particles are the main sources of the Co/CNTs catalyst deactivation.In the case of the Co/γ-Al2O3 catalyst,after 720 h on stream of continuous FT synthesis the average cobalt nano particles diameter increased from 15.9 to 18.4 nm,whereas,under the same reaction conditions the average cobalt nano particles diameter of the Co/CNTs increased from 11.2 to 17.8 nm.Although,the initial FT activity of the Co/CNTs was 26% higher than that of the Co/γ-Al2O3,the FT activity over the Co/CNTs after 720 h on stream decreased by 49% and that over the Co/γ-Al2O3 by 32%.For the Co/γ-Al2O3 catalyst 6.7% of total activity loss and for the Co/CNTs catalyst 11.6% of total activity loss cannot be recovered after regeneration of the catalyst at the same conditions of the first regeneration step.It is concluded that using CNTs as cobalt catalyst support is beneficial in carbon utilization as compared to γ-Al2O3 support,but the Co/CNTs catalyst is more susceptible for deactivation.