The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical mode...Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical model of the zone, the fan, the heating coil and sensor are built. HVAC is a non-linear, strong disturbance and coupling system. Linear active-rejection-disturbance-control is an appreciate control algorithm which can adapt to less information, strong-disturbance influence, and has relative-fixed structure and simple tuning process of the controller parameters. Active-rejection-disturbance-control of the HVAC system is proposed. Simulation in Matlab/Simulink was done. Simulation results show that linear active-rejection-disturbance-control was prior to PID and integral-fuzzy controllers in rising time, overshoot and response time of step disturbance. The study can provide fundamental basis for the control of the air-condition system with strong-disturbance and high-precision needed.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited comp...Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.展开更多
An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to...An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.展开更多
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is...This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.展开更多
Hydraulic actuated quadruped robots have bright application prospects and significant research values in unmanned area investigation,disaster rescue and other scenarios,due to the advantages of high payload and high p...Hydraulic actuated quadruped robots have bright application prospects and significant research values in unmanned area investigation,disaster rescue and other scenarios,due to the advantages of high payload and high power to weight ratio.Among these fields,inevitable collision of robots may occur when contact with unknown objects,step on empty objects,or collapse,all of which have an impact on the working hydraulic system.To overcome the unknown external disturbances,this paper proposes an active disturbance rejection control(ADRC)strategy of double vane hydraulic rotary actuators for the hip joints of the quadruped robots.Considering the order of the valve-controlled actuator model,a three-stage tracking differentiator,a four-stage extended state observer,and a state error feedback controller are designed relatively,and the extended state observer is adopted to observe and compensate the uncertainty of external load torque of the system.The effectiveness of the ADRC method is verified in simulation environment and a single joint experimental platform.Moreover,the impact experiments of the limb leg unit are carried out after introducing the proposed ADRC strategy into hip joint,the limb leg unit of quadruped robots presents better impact resistance ability.展开更多
Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn ...Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn tension during the robotic splicing process.The purpose of this research is to design active disturbance rejection control(ADRC)for a third-order nonlinear tension system subject to external disturbances.Firstly,a third-order extended state observer(ESO)is designed to achieve the suppression and the compensation of the internal modeling error and the external disturbances of the system.Secondly,the adaptive gain error feedback control and the filtering process are designed to reduce the influence of sensor noise on the disturbance observation.Finally,the tension control during the splicing process is simulated and experimented,and the experiments show that the method has good robustness in the tension tracking task under a dynamic environment,which verifies the effectiveness of the method.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej...With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.展开更多
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt...The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation.展开更多
Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decis...Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.展开更多
The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effe...The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effective temperature control is crucial to ensure fuel cell reliability and durability. This paper uses active disturbance rejection control in the thermal management system to maintain the operating temperature and the stack inlet and outlet temperature difference at the set value. First, key cooling system modules such as expansion tanks, coolant circulation pumps and radiators based on Simulink were built. Then, physical modeling and simulation of the fuel cell cooling system was carried out. In order to ensure the effectiveness of the control strategy and reduce the parameter tuning workload, an active disturbance rejection control parameter optimization method using an elite genetic algorithm was proposed. When the optimized control strategy responds to input disturbances, the maximum overshoot of the system is only 1.23% and can reach stability again in 30 s, so the fuel cell temperature can be controlled effectively. Simulation results show that the optimized control strategy can effectively control the stack temperature and coolant temperature difference under the influence of stepped charging current without interference or with interference, and has strong robustness and anti-interference capability.展开更多
This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coi...This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.展开更多
The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body ...The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.展开更多
The effects of active control on the vehicle roll were studied. Based on the theory that distributing the greater roll stiffness to the rear axle can improve tracking trajectory capacity and increase maneuver stabilit...The effects of active control on the vehicle roll were studied. Based on the theory that distributing the greater roll stiffness to the rear axle can improve tracking trajectory capacity and increase maneuver stability, an eight degrees of freedom vehicle model was established and feedforward feedback control strategy was devised to control distribution of lateral load transfer on the front axle and the rear one. Simulation results showed that the proposed control strategy can improve comfort, maneuver stability and safety effectively.展开更多
Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a pie...Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.展开更多
The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosu...The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosure can be decomposed into independent parts and the radiation modes contribute to potential energy independently. The control strategy for minimizing first G radiation modes with large radiation efficiency is proposed, and the optimal model of control forces is presented. Finally, a numerical simulation for minimizing sound transmission into a rectangular enclosure using the proposed method is conducted. Simulation results indicate that one control force can control one radiation mode and controlling the first four-order radiation modes with four control forces can achieve significant potential energy reduction at the low frequency range.展开更多
Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of pr...Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of primary system is derived by means of harmonic balancing technique so that the working frequency of the vibration absorber can trace the frequency variation of the harmonic excitation. The efficacy of the strategy is demonstrated by numerical simulations for attenuating the steady state vibration of a SDOF system and a 2 DOF system, which are under the harmonic excitation with slowly varied frequency in a wide range.展开更多
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
文摘Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical model of the zone, the fan, the heating coil and sensor are built. HVAC is a non-linear, strong disturbance and coupling system. Linear active-rejection-disturbance-control is an appreciate control algorithm which can adapt to less information, strong-disturbance influence, and has relative-fixed structure and simple tuning process of the controller parameters. Active-rejection-disturbance-control of the HVAC system is proposed. Simulation in Matlab/Simulink was done. Simulation results show that linear active-rejection-disturbance-control was prior to PID and integral-fuzzy controllers in rising time, overshoot and response time of step disturbance. The study can provide fundamental basis for the control of the air-condition system with strong-disturbance and high-precision needed.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology(Northeast Electric Power University)Open Fund(MPSS2023⁃01)National Natural Science Foundation of China(No.52477133)+2 种基金Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.
基金supported by the National Natural Science Foundation of China (Grant No.92271107)。
文摘An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金Dean Research&Consultancy under Grant No.Dean (R&C)/2020-21/1155。
文摘This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.
基金Supported by National Natural Science Foundation of China(Grant No.U21A20124)China Postdoctoral Science Foundation(Grant Nos.2023T160570,2022M722737)the Key Research and Development Program of Zhejiang Province of China(Grant No.2022C01039).
文摘Hydraulic actuated quadruped robots have bright application prospects and significant research values in unmanned area investigation,disaster rescue and other scenarios,due to the advantages of high payload and high power to weight ratio.Among these fields,inevitable collision of robots may occur when contact with unknown objects,step on empty objects,or collapse,all of which have an impact on the working hydraulic system.To overcome the unknown external disturbances,this paper proposes an active disturbance rejection control(ADRC)strategy of double vane hydraulic rotary actuators for the hip joints of the quadruped robots.Considering the order of the valve-controlled actuator model,a three-stage tracking differentiator,a four-stage extended state observer,and a state error feedback controller are designed relatively,and the extended state observer is adopted to observe and compensate the uncertainty of external load torque of the system.The effectiveness of the ADRC method is verified in simulation environment and a single joint experimental platform.Moreover,the impact experiments of the limb leg unit are carried out after introducing the proposed ADRC strategy into hip joint,the limb leg unit of quadruped robots presents better impact resistance ability.
基金National Natural Science Foundation of China(No.52275478)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(No.LZB2023001)。
文摘Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn tension during the robotic splicing process.The purpose of this research is to design active disturbance rejection control(ADRC)for a third-order nonlinear tension system subject to external disturbances.Firstly,a third-order extended state observer(ESO)is designed to achieve the suppression and the compensation of the internal modeling error and the external disturbances of the system.Secondly,the adaptive gain error feedback control and the filtering process are designed to reduce the influence of sensor noise on the disturbance observation.Finally,the tension control during the splicing process is simulated and experimented,and the experiments show that the method has good robustness in the tension tracking task under a dynamic environment,which verifies the effectiveness of the method.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金the 2021 Key Project of Natural Science and Technology of Yangzhou Polytechnic Institute,Active Disturbance Rejection and Fault-Tolerant Control of Multi-Rotor Plant ProtectionUAV Based on QBall-X4(Grant Number 2021xjzk002).
文摘With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.
基金supported by the Lanzhou Jiaotong University-Southwest Jiaotong University Joint Innovation Fund(LH2024027).
文摘The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation.
文摘Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.
文摘The performance of proton exchange membrane fuel cells is very sensitive to temperature. The electrochemical reaction results directly in temperature variations in the proton exchange membrane fuel cell. Ensuring effective temperature control is crucial to ensure fuel cell reliability and durability. This paper uses active disturbance rejection control in the thermal management system to maintain the operating temperature and the stack inlet and outlet temperature difference at the set value. First, key cooling system modules such as expansion tanks, coolant circulation pumps and radiators based on Simulink were built. Then, physical modeling and simulation of the fuel cell cooling system was carried out. In order to ensure the effectiveness of the control strategy and reduce the parameter tuning workload, an active disturbance rejection control parameter optimization method using an elite genetic algorithm was proposed. When the optimized control strategy responds to input disturbances, the maximum overshoot of the system is only 1.23% and can reach stability again in 30 s, so the fuel cell temperature can be controlled effectively. Simulation results show that the optimized control strategy can effectively control the stack temperature and coolant temperature difference under the influence of stepped charging current without interference or with interference, and has strong robustness and anti-interference capability.
基金National Natural Science Foundation of China (50275114)
文摘This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.
文摘The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.
文摘The effects of active control on the vehicle roll were studied. Based on the theory that distributing the greater roll stiffness to the rear axle can improve tracking trajectory capacity and increase maneuver stability, an eight degrees of freedom vehicle model was established and feedforward feedback control strategy was devised to control distribution of lateral load transfer on the front axle and the rear one. Simulation results showed that the proposed control strategy can improve comfort, maneuver stability and safety effectively.
文摘Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.
基金Supported by the National Natural Science Foundation of China(50375027,50575041)~~
文摘The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosure can be decomposed into independent parts and the radiation modes contribute to potential energy independently. The control strategy for minimizing first G radiation modes with large radiation efficiency is proposed, and the optimal model of control forces is presented. Finally, a numerical simulation for minimizing sound transmission into a rectangular enclosure using the proposed method is conducted. Simulation results indicate that one control force can control one radiation mode and controlling the first four-order radiation modes with four control forces can achieve significant potential energy reduction at the low frequency range.
文摘Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of primary system is derived by means of harmonic balancing technique so that the working frequency of the vibration absorber can trace the frequency variation of the harmonic excitation. The efficacy of the strategy is demonstrated by numerical simulations for attenuating the steady state vibration of a SDOF system and a 2 DOF system, which are under the harmonic excitation with slowly varied frequency in a wide range.