Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimi...Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.展开更多
Lanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 2) Institute of Geology, China Seismological Bureau, Beijing 100029, China
Based on historical earthquake data, we use statistical methods to study integrated recurrence behaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnan region. The results show that re...Based on historical earthquake data, we use statistical methods to study integrated recurrence behaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnan region. The results show that recurrences of strong earthquakes in the 7 fault zones display near-random, random and clustering behaviors. The recurrence processes are never quasi-periodic, and are neither strength-time nor time-strength dependent. The more independent segments for strong earthquake rupturing a fault zone has, the more complicated the corresponding recurrence process is. And relatively active periods and quiescent periods for earthquake activity occur alternatively. Within the active periods, the distribution of recurrence time intervals between earthquakes has relatively large discretion, and can be modelled well by a Weibull distribution. The time distribution of the quiescent periods has relatively small discretion, and can be approximately described by some distributions as the normal. Both the durations of the active periods and the numbers of strong earthquakes within the active periods vary obviously cycle by cycle, leading to the relatively active periods having never repeated quasi-periodically. Therefore, the probabilistic assessment for middle- and long-term seismic hazard for entireties of active fault zones based on data of historical strong earthquakes on the fault zones still faces difficulty.展开更多
Based on regional geological mapping results and interpretation of satellites images and areophotos in combination with detailed field study,this paper gives the spatial distribution of recent surface activity of the ...Based on regional geological mapping results and interpretation of satellites images and areophotos in combination with detailed field study,this paper gives the spatial distribution of recent surface activity of the Ganzi-Yushu fault zone(GYF).According to faulted landform as well as deformation and displacement of young deposit layers,the slip rates of GYF since the late Quaternary are briefly studied,combined with the results of geological chronology(14C and Thermoluminescene dating).The result shows that the average slip rates of GYF is differentiate along different segments:Ganzi segment:horizontal rate is 3.4±0.3 mm/a,vertical rate is 2.2±0.1 mm/a;Manigange segment:horizontal rate is 7.0±0.7 mm/a;Denke segment:horizontal rate is 7.2±1.2 mm/a;Dangjiang segment:horizontal rate is 7.3±0.6 mm/a.展开更多
By computing and classifying the data of gully offset obtained from field surveys along the Tianjingshan fault zone and estimating the ages of three types of gullies,the strike-slip rates along the fault zone are disc...By computing and classifying the data of gully offset obtained from field surveys along the Tianjingshan fault zone and estimating the ages of three types of gullies,the strike-slip rates along the fault zone are discussed in different time intervals and fault segments.The results suggest that the intensity of activity along the fault zone is not strong,but the differences between different time intervals and fault segments since the late Pleistocene have been obvious.The average rates range from 0.23 mm/a to 1.62 mm/a.The largest average rate is 1.40 mm/a,which occurred in the early and middle of late Pleistocene along the western segment of the fault zone.Since the late stage of the late Pleistocene,the center of faulting activity of the fault zone has shifted to the middle segment,and the average slip rates range have changed from 1.30 mm/a to 1.63 mm/a.展开更多
The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the ...The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the Baoding-Shijiazhuang fault and the Xushui fault were active in the late Pleistocene,but the south Xushui fault has been inactive since the late Pleistocene.The maximum magnitude of potential earthquake of the faults is 6.0.展开更多
Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation...Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation of remote sensing images and repeated surface investigations,we excavated trenches at the sections where the tectonic landform is significant,identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples ' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault,three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip,as represented typically by fault scarps,wedge accumulation,the faults and the filled cracks and so on. In general,it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition,the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.展开更多
The process and result of fractal research of natural fault gouge collected from the active fault zone at northern edge of Western Qinling Mt. by using optical and electronic microscope technics were introduced in thi...The process and result of fractal research of natural fault gouge collected from the active fault zone at northern edge of Western Qinling Mt. by using optical and electronic microscope technics were introduced in this paper. The fractal dimension of this fault gouge is D =2.594±0.122 (2 D plane D =1.594±0.122), and its upper limit of fractal dimension occurs at grain size at 9.6~19.2 mm. The study result shows that this gouge is fractal, and its characteristic displacement parameter of stick slip friction can be determined by upper limit of fractal dimension. The feature of protolith which affect fractality and the significance of gouge fractal to seismic fault changes are also disscussed in the paper.展开更多
A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in C...A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate, next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses, deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary, for example, left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3, the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other, and continued to be active till present day, producing active fanlt zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events, in the epicenter areas experience intensive deformation character- ized by large-amplitude rise and fall of neighboring sections, generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi, Taiwan event in 1999 and Yuza, Yunnan event in 1955, including contours of accelerations and intensities, destruction of buildings, and in contrast to the Xigeda formation in southwestern China, a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers, i.e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released, and serves as a channel for seismic waves.展开更多
We examined the whole strong earthquake recurrence behaviors of two fault zones along the Kefallinia Transform, Ionian Sea, Greece, using seismological data and statistical methods. Our data include 29 events with M ...We examined the whole strong earthquake recurrence behaviors of two fault zones along the Kefallinia Transform, Ionian Sea, Greece, using seismological data and statistical methods. Our data include 29 events with M 〉 5.5 for the period 1636 - 2003. We found different recurrence behaviors for the Kefallinia Fault Zone (clustering and time-predictable recurrence behaviors) and the Letkada Fault Zone (near random and non-slip-predictable or non-time-predictable recurrence nature). The different modes may be attributed to: (a) segment interaction along-strike (Kefallinia) by static triggering and (b) the influence of fault systems to the north and east on the recurrence on Lefkada. Within the active periods, earthquake recurrence intervals are distributed in a more dispersed fashion, and can be fitted well by a Weibull distribution. In contrast, the distribution of the quiet periods is relatively less dispersed and difficult to describe by suitable probability functions.展开更多
Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics a...Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan M. 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.展开更多
Studying the characteristics of a prehistoric giant landslide and ascertaining its relationship with palaeo-seismic events could provide useful information on the role of regional tectonic activities in hillslope evol...Studying the characteristics of a prehistoric giant landslide and ascertaining its relationship with palaeo-seismic events could provide useful information on the role of regional tectonic activities in hillslope evolution.Here,a giant palaeoseismic landslide(GPSL),namely,the Luanshibao(LSB)landslide,located on the eastern margin of the Qinghai-Tibet Plateau,was investigated to ascertain its characteristics and occurrence age.The relationship between occurrence age and palaeoseismic episodes was also discussed by using 14 C dating on the adjacent active faults,including the regional Yidun-Litang-Dewu(YD-LT-DW)fault zone,which crossed the LSB landslide.The dating of multiple samples acquired from palaeo-seismic trenches revealed that at least 5 palaeo-seismic episodes had occurred in the vicinity of the LSB landslide over the last 5000 years.The occurrence age of the LSB landslide(3635±387 a BP)coincides with palaeo-seismic episode I,and the LSB landslide is convincingly inferred to have been triggered during episode I,which reached a seismic intensity(Chinese scale)of at least degree VII near the LSB landslide during failure.The timing of a second reactivation phase coincides with palaeo-seismic episode IV,which occurred at 2100-2200 a BP.The study could provide reference for studying the regional palaeoseismic activities and palaeo landslide evolution near the Litang area.展开更多
The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fu- jian Province. And the characteristics of magnitude, direction and distribution of tectonic stress hav...The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fu- jian Province. And the characteristics of magnitude, direction and distribution of tectonic stress have been obtained. Based on the observed stress data, the characteristics and activities of fault zones are analyzed and studied in the paper according to the Coulomb friction criteria. 1 The maximum horizontal principal compressive stress is in the NW-WNW direction from the north to the south along the coastline verge, which is parallel to the strike of the NW-trending fault zone, consistent with the direction of principal compressive stress obtained from geological structure and across-fault deformation data, and different from that reflected by focal mechanism solution by about 20°. 2 The horizontal principal stress increases with depth, the relation among three stresses is SH>Sv>Sh or SH≈Sv>Sh, and the stress state is liable to normal fault and strike-slip fault activities. 3 According to Coulomb friction criteria and taking the friction strength μ as 0.6~1.0 for analysis, the stress state reaching or exceeding the threshold for normal-fault frictional sliding near the fault implies that the current tectonic activity in the measuring area is mainly normal faulting. 4 The force source of current tectonic stress field comes mainly from the westward and northwestward horizontal extrusions from the Pacific and Philippine Plates respectively to the Eurasian Plate.展开更多
The East Kuulun active fault zone, which lies in the valley of the Kuulun Mountains above an elevation of 4,000 meters, is an important active fault zone in the Northeast Qinghai-Xizang (Tibet) Plateau. The 1937, th...The East Kuulun active fault zone, which lies in the valley of the Kuulun Mountains above an elevation of 4,000 meters, is an important active fault zone in the Northeast Qinghai-Xizang (Tibet) Plateau. The 1937, the Tosonhu lake Ms7. 5 earthquake occurred in the eastern segment of the East Kuulun active fault zone. Four field investigations were launched on this seism in 1963, 1971, 1980, and between 1986 and 1990. However, due to different extents of the investigations, four different conclusions have been gained. Concerning the length aspect of the surface rupture zone of this earthquake, the unanimous consensus is that its eastern end lies in the west side of the main Ridge of the A 'nyemaqen Mountains, but opinions about the western end and the location of the macro-epicenter are different. Based on investigation and comprehensive study, a series of scientific problems like geometric and kinetic characteristics, the length of the rupture zone, the maximum sinistral horizontal displacement and the macroepicenter were re-evaluated. We believe that the total length of this earthquake's surface deformation zone is at least 240km; the western end of the zone is at the west of Wnsuwuwoguole; the maximum sinistral horizontal displacement is 8m to the west of Baerhalasha gully on the east side of Sanchakou; the maximum vertical displacement is 3.5m in the south of Sanchakou and the macro-epicenter is in Sanchakou.展开更多
The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-...The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.展开更多
文摘Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.
基金State Key Basic Research Development and Programming Project (G19980407-04) and the Project during the ninth Five-Year Plan of Gansu Province (GK973-2-110A).
文摘Lanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 2) Institute of Geology, China Seismological Bureau, Beijing 100029, China
文摘Based on historical earthquake data, we use statistical methods to study integrated recurrence behaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnan region. The results show that recurrences of strong earthquakes in the 7 fault zones display near-random, random and clustering behaviors. The recurrence processes are never quasi-periodic, and are neither strength-time nor time-strength dependent. The more independent segments for strong earthquake rupturing a fault zone has, the more complicated the corresponding recurrence process is. And relatively active periods and quiescent periods for earthquake activity occur alternatively. Within the active periods, the distribution of recurrence time intervals between earthquakes has relatively large discretion, and can be modelled well by a Weibull distribution. The time distribution of the quiescent periods has relatively small discretion, and can be approximately described by some distributions as the normal. Both the durations of the active periods and the numbers of strong earthquakes within the active periods vary obviously cycle by cycle, leading to the relatively active periods having never repeated quasi-periodically. Therefore, the probabilistic assessment for middle- and long-term seismic hazard for entireties of active fault zones based on data of historical strong earthquakes on the fault zones still faces difficulty.
文摘Based on regional geological mapping results and interpretation of satellites images and areophotos in combination with detailed field study,this paper gives the spatial distribution of recent surface activity of the Ganzi-Yushu fault zone(GYF).According to faulted landform as well as deformation and displacement of young deposit layers,the slip rates of GYF since the late Quaternary are briefly studied,combined with the results of geological chronology(14C and Thermoluminescene dating).The result shows that the average slip rates of GYF is differentiate along different segments:Ganzi segment:horizontal rate is 3.4±0.3 mm/a,vertical rate is 2.2±0.1 mm/a;Manigange segment:horizontal rate is 7.0±0.7 mm/a;Denke segment:horizontal rate is 7.2±1.2 mm/a;Dangjiang segment:horizontal rate is 7.3±0.6 mm/a.
基金This project was sponsored by the State Seismological Bureau (85-02-3-3), China
文摘By computing and classifying the data of gully offset obtained from field surveys along the Tianjingshan fault zone and estimating the ages of three types of gullies,the strike-slip rates along the fault zone are discussed in different time intervals and fault segments.The results suggest that the intensity of activity along the fault zone is not strong,but the differences between different time intervals and fault segments since the late Pleistocene have been obvious.The average rates range from 0.23 mm/a to 1.62 mm/a.The largest average rate is 1.40 mm/a,which occurred in the early and middle of late Pleistocene along the western segment of the fault zone.Since the late stage of the late Pleistocene,the center of faulting activity of the fault zone has shifted to the middle segment,and the average slip rates range have changed from 1.30 mm/a to 1.63 mm/a.
基金sponsored by Active Faults Seismic Hazard Assessment in Key Earthquake Monitoring and Defensive Region of China
文摘The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the Baoding-Shijiazhuang fault and the Xushui fault were active in the late Pleistocene,but the south Xushui fault has been inactive since the late Pleistocene.The maximum magnitude of potential earthquake of the faults is 6.0.
基金jointly funded by the Anhui provincial geological public-welfare project“New Activities of Quaternary and Medium Velocity Structure Exploration and Evaluation for Key Sections of the Tan-Lu Fault Zone(the Anhui segment)”(2015-g-25)the project of“3-D Seismic Section Model and Earthquake Prediction Research in the Tanlu Fault Zone”,China Earthquake Administration(TYZ20160101)
文摘Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation of remote sensing images and repeated surface investigations,we excavated trenches at the sections where the tectonic landform is significant,identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples ' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault,three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip,as represented typically by fault scarps,wedge accumulation,the faults and the filled cracks and so on. In general,it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition,the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.
文摘The process and result of fractal research of natural fault gouge collected from the active fault zone at northern edge of Western Qinling Mt. by using optical and electronic microscope technics were introduced in this paper. The fractal dimension of this fault gouge is D =2.594±0.122 (2 D plane D =1.594±0.122), and its upper limit of fractal dimension occurs at grain size at 9.6~19.2 mm. The study result shows that this gouge is fractal, and its characteristic displacement parameter of stick slip friction can be determined by upper limit of fractal dimension. The feature of protolith which affect fractality and the significance of gouge fractal to seismic fault changes are also disscussed in the paper.
文摘A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate, next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses, deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary, for example, left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3, the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other, and continued to be active till present day, producing active fanlt zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events, in the epicenter areas experience intensive deformation character- ized by large-amplitude rise and fall of neighboring sections, generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi, Taiwan event in 1999 and Yuza, Yunnan event in 1955, including contours of accelerations and intensities, destruction of buildings, and in contrast to the Xigeda formation in southwestern China, a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers, i.e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released, and serves as a channel for seismic waves.
基金This paper is part result of the program"Investigation of recurrence modes of large earthquakes alongthe main seismogenic faults in Greece andin China"(20051696) in the frame of bilateral cooperation between China and Greece inthefield of seismology and geophysics sponsored bythe Ministry of Science and Technologyof China This programis mainlyfunded bythe NSF40674024 and the NSF40374019
文摘We examined the whole strong earthquake recurrence behaviors of two fault zones along the Kefallinia Transform, Ionian Sea, Greece, using seismological data and statistical methods. Our data include 29 events with M 〉 5.5 for the period 1636 - 2003. We found different recurrence behaviors for the Kefallinia Fault Zone (clustering and time-predictable recurrence behaviors) and the Letkada Fault Zone (near random and non-slip-predictable or non-time-predictable recurrence nature). The different modes may be attributed to: (a) segment interaction along-strike (Kefallinia) by static triggering and (b) the influence of fault systems to the north and east on the recurrence on Lefkada. Within the active periods, earthquake recurrence intervals are distributed in a more dispersed fashion, and can be fitted well by a Weibull distribution. In contrast, the distribution of the quiet periods is relatively less dispersed and difficult to describe by suitable probability functions.
基金supported by the research funds of the Institute of Geomechanics,Chinese Academy of Geological Science(Grant No.DZLXJK201404)the Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(Grant No.2012BAK19B03–3)
文摘Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan M. 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1501000)the National Natural Science Foundation of China(Grant No.41877235)+2 种基金the National Science Funds for Creative Research Groups of China(Grant No.41521002)the Technology Innovation Fund of the Sichuan Earthquake Agency(201802,201804)the Seismic Active Fault Exploration Fund of China(201108001)。
文摘Studying the characteristics of a prehistoric giant landslide and ascertaining its relationship with palaeo-seismic events could provide useful information on the role of regional tectonic activities in hillslope evolution.Here,a giant palaeoseismic landslide(GPSL),namely,the Luanshibao(LSB)landslide,located on the eastern margin of the Qinghai-Tibet Plateau,was investigated to ascertain its characteristics and occurrence age.The relationship between occurrence age and palaeoseismic episodes was also discussed by using 14 C dating on the adjacent active faults,including the regional Yidun-Litang-Dewu(YD-LT-DW)fault zone,which crossed the LSB landslide.The dating of multiple samples acquired from palaeo-seismic trenches revealed that at least 5 palaeo-seismic episodes had occurred in the vicinity of the LSB landslide over the last 5000 years.The occurrence age of the LSB landslide(3635±387 a BP)coincides with palaeo-seismic episode I,and the LSB landslide is convincingly inferred to have been triggered during episode I,which reached a seismic intensity(Chinese scale)of at least degree VII near the LSB landslide during failure.The timing of a second reactivation phase coincides with palaeo-seismic episode IV,which occurred at 2100-2200 a BP.The study could provide reference for studying the regional palaeoseismic activities and palaeo landslide evolution near the Litang area.
基金National Development and Reform Commission [2004]1138.
文摘The in-situ hydraulic fracturing stress measurements have been carried out around the coastal marginal land in Fu- jian Province. And the characteristics of magnitude, direction and distribution of tectonic stress have been obtained. Based on the observed stress data, the characteristics and activities of fault zones are analyzed and studied in the paper according to the Coulomb friction criteria. 1 The maximum horizontal principal compressive stress is in the NW-WNW direction from the north to the south along the coastline verge, which is parallel to the strike of the NW-trending fault zone, consistent with the direction of principal compressive stress obtained from geological structure and across-fault deformation data, and different from that reflected by focal mechanism solution by about 20°. 2 The horizontal principal stress increases with depth, the relation among three stresses is SH>Sv>Sh or SH≈Sv>Sh, and the stress state is liable to normal fault and strike-slip fault activities. 3 According to Coulomb friction criteria and taking the friction strength μ as 0.6~1.0 for analysis, the stress state reaching or exceeding the threshold for normal-fault frictional sliding near the fault implies that the current tectonic activity in the measuring area is mainly normal faulting. 4 The force source of current tectonic stress field comes mainly from the westward and northwestward horizontal extrusions from the Pacific and Philippine Plates respectively to the Eurasian Plate.
基金the National Science Foundation (Grant No.40474037) and by the Special Programfor Early-stage Investigation of National Major Basic Research of the Ministry of Science and Technology,China (Grant No.JC200016)
文摘The East Kuulun active fault zone, which lies in the valley of the Kuulun Mountains above an elevation of 4,000 meters, is an important active fault zone in the Northeast Qinghai-Xizang (Tibet) Plateau. The 1937, the Tosonhu lake Ms7. 5 earthquake occurred in the eastern segment of the East Kuulun active fault zone. Four field investigations were launched on this seism in 1963, 1971, 1980, and between 1986 and 1990. However, due to different extents of the investigations, four different conclusions have been gained. Concerning the length aspect of the surface rupture zone of this earthquake, the unanimous consensus is that its eastern end lies in the west side of the main Ridge of the A 'nyemaqen Mountains, but opinions about the western end and the location of the macro-epicenter are different. Based on investigation and comprehensive study, a series of scientific problems like geometric and kinetic characteristics, the length of the rupture zone, the maximum sinistral horizontal displacement and the macroepicenter were re-evaluated. We believe that the total length of this earthquake's surface deformation zone is at least 240km; the western end of the zone is at the west of Wnsuwuwoguole; the maximum sinistral horizontal displacement is 8m to the west of Baerhalasha gully on the east side of Sanchakou; the maximum vertical displacement is 3.5m in the south of Sanchakou and the macro-epicenter is in Sanchakou.
基金supported by the National Natural Science Foundation of China(Grant Nos.41472186&91414301)the National Key Basic Research Program of China(Grant No.2016YFC0600102)
文摘The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.