期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Advanced flow measurement and active flow control of aircraft with MEMS
1
作者 Jiang Chengyu Deng Jinjun +1 位作者 Ma Binghe Yuan Weizheng 《Engineering Sciences》 EI 2012年第5期26-32,共7页
Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transduce... Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transducers fabrication.This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators.Micro sensors include the flexible thermal sensor array,capacitive shear stress sensor and high sensitivity pressure sensor.Micro actuators are the balloon actuator and synthetic jet actuator respectively.Through wind tunnel test,these micro transducers achieve the goals of shear stress and pressure distribution measurement,boundary layer separation control,lift enhancement,etc.And unmanned aerial vehicle(UAV) flight test verifies the ability of maneuver control of micro actuator.In the future work,micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft. 展开更多
关键词 MEMS flow measurement active flow control smart skin
下载PDF
Review of actuators for high speed active flow control 被引量:22
2
作者 WANG Lin LUO ZhenBing +2 位作者 XIA ZhiXun LIU Bing DENG Xiong 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2225-2240,共16页
Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and ma... Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward. 展开更多
关键词 active flow control actuators figure of merit fluidic MECHANICAL PLASMA
原文传递
Application of Active Flow Control Technique for Gust Load Alleviation 被引量:9
3
作者 XU Xiaoping ZHU Xiaoping +1 位作者 ZHOU Zhou FAN Ruijun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期410-416,共7页
A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Gl... A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Global Hawk" airfoil using arrays of jets during the gust process. Based on unsteady Navier-Stokes equations, the grid-velocity method is introduced to simulate the gust influence, and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well. An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil’s surface to emulate the time dependent velocity boundary conditions. Firstly, after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack, it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references. Furthermore, gust response characteristic for the quasi "Global Hawk" airfoil is analyzed. Five kinds of flow control techniques are introduced as steady blowing, steady suction, unsteady blowing, unsteady suction and synthetic jets. The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice. Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation, can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation. 展开更多
关键词 active flow control gust response gust alleviation numerical simulation AERODYNAMICS unsteady flow AIRFOIL
原文传递
Active flow control using machine learning:A brief review 被引量:8
4
作者 Feng Ren Hai-bao Hu Hui Tang 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第2期247-253,共7页
Nowadays the rapidly developing artificial intelligence has become a key solution for problems of diverse disciplines,especially those involving big data.Successes in these areas also attract researchers from the comm... Nowadays the rapidly developing artificial intelligence has become a key solution for problems of diverse disciplines,especially those involving big data.Successes in these areas also attract researchers from the community of fluid mechanics,especially in the field of active flow control(AFC).This article surveys recent successful applications of machine learning in AFC,highlights general ideas,and aims at offering a basic outline for those who are interested in this specific topic.In this short review,we focus on two methodologies,i.e.,genetic programming(GP)and deep reinforcement learning(DRL),both having been proven effective,efficient,and robust in certain AFC problems,and outline some future prospects that might shed some light for relevant studies. 展开更多
关键词 active flow control(AFC) machine learning genetic programming(GP) deep reinforcement learning(DRL)
原文传递
Ferrofluid moving thin films for active flow control 被引量:3
5
作者 Francisco J.ARIAS 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期115-119,共5页
Ferrofluid moving thin films and their possible significance with regard to active flow control for lift and attack angle enhancement are discussed.In this strategy,a very thin film of ferrofluid is strongly attached ... Ferrofluid moving thin films and their possible significance with regard to active flow control for lift and attack angle enhancement are discussed.In this strategy,a very thin film of ferrofluid is strongly attached at the wall of the wing by a normal magnetic field from below and pumped tangentially along the wing.Utilizing a simplified physical model and from the available experimental data on moving walls,the expected lift enhancement and effect on the attack angle were assessed.Additional research and design is required in order to explore the possibilities in the use of ferrofluid moving thin films. 展开更多
关键词 active flow control Boundary layer separation FERROFLUID
原文传递
Nacelle intake flow separation reduction at cruise condition using active flow control
6
作者 Vinayak Ramachandran Nambiar Vassilios Pachidis 《Propulsion and Power Research》 SCIE 2022年第3期337-352,共16页
Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (Ao... Turbofan engine intakes are designed to provide separation-free flow at the fan faceover a wide range of operating conditions. But at some off-design conditions, like at high flightspeeds and high angles of attack (AoA), the aero engine intake may encounter flow separation.This boundary layer separation inside the nacelle inlet of an aircraft engine can lead to a largenumber of undesirable outcomes like reduction in fan efficiency, engine stall and high levels ofstress on the fan blades. Active flow control is a promising solution to reduce inlet boundarylayer separation and the associated fan-face flow distortion at such off-design conditions. Byblowing pressurized air into the intake near the separation point, the boundary layer is ener-gized and separation can be controlled. This study investigates the applicability of lip blowing,an active flow control technique, to control intake separation and flow distortion at the fan-face.First, intake separation was triggered in a 3D CFD model based on the NASA CommonResearch Model (CRM) using high AoA cases at cruise condition (Mach number 0.85, Massflow capture ratio w0.7) and the features of separated flow were analyzed. Thereafter, activeflow control was introduce to the intake in the form of two types of lip blowing, direct andpitched blowing. The efficacy of lip blowing at achieving separation control in an ultra highbypass ratio turbofan engine intake has been established through this study. The present paperalso examines the significance of blowing parameters like the type of blowing, blowing pres-sure ratio, and blowing slot dimension, at different angles of attack to identify the critical con-trol parameters. Our research successfully establishes proof of concept by demonstrating the feasibility of using lip blowing for separation control in aero-intakes, via numerical modelling.Furthermore, this study also provides crucial insights regarding the important variables to beconsidered for future experimental studies, and also for detailed studies covering a wider rangeof operating and blowing conditions. 展开更多
关键词 Ultra high bypass ratio turbofan engine NASA Common Research Model Reynolds-averaged Navier-Stokes(RANS) Computational fluid dynamics(CFD) ANSYS Fluent Intake flow separation active flow control Lip blowing
原文传递
PASSIVE-ACTIVE CONTROL OF A FLEXIBLE ISOLATION SYSTEM
7
作者 Song KongjieZhang BingSun LinglingSun YuguoSchool of Mechanical Engineering, Shandong University, Jinan 250061, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期408-410,416,共4页
Passive-active control of a flexible isolation system is investigated from the viewpoint of power flow. Dynamic transfer equations of the system are deduced based on a matrix method which uses mobility or impedance re... Passive-active control of a flexible isolation system is investigated from the viewpoint of power flow. Dynamic transfer equations of the system are deduced based on a matrix method which uses mobility or impedance representations of three substructures: the source of vibration, the receiver and the mounting system which connects the source to the receiver. The cancellation of axial input forces to the receiver is considered as the active control strategy and its effects are discussed. The results of the study show that the strategy adopted herein can effectively reduce the power transmitted to the receiver. 展开更多
关键词 Flexible isolation system Power flow active control
下载PDF
The law of anti-VCAM-1 targeted microbubbles adhesion to activated endothelial cells under controlled shear flow
8
作者 Lie Zhang,Hong Yang,Yiyao Liu(Department of Biophysics,School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu 610054,Sichuan,China) 《医用生物力学》 EI CAS CSCD 2009年第S1期11-11,共1页
Microbubbles can enhance the detection in noninvasive ultrasound imaging.Recently,targeted microbubbles have been developed to selectively adhere to specific and overexpressed p molecules in endothelial cells in some ... Microbubbles can enhance the detection in noninvasive ultrasound imaging.Recently,targeted microbubbles have been developed to selectively adhere to specific and overexpressed p molecules in endothelial cells in some pathologic conditions.However,the law of 展开更多
关键词 HUVECs The law of anti-VCAM-1 targeted microbubbles adhesion to activated endothelial cells under controlled shear flow
下载PDF
DOUBLE LOOP ACTIVE VIBRATION CONTROL OF PNEUMATIC ISOLATOR WITH TWO SEPARATE CHAMBERS
9
作者 YANG Qingjun LI Jun WANG Zuwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期610-613,共4页
A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonance... A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously. 展开更多
关键词 Pneumatic isolator active vibration control Double-loop control Two separate chambers Mass flow rate compensation (MFRC)
下载PDF
Mechanism of perturbation-combined active control technique for asymmetric vortex flow over slender body at high angle of attack 被引量:1
10
作者 WANG YanKui SHAN JiXiang +3 位作者 TIAN Wei DENG XueYing DONG JinGang TIAN Xiao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第10期2665-2673,共9页
Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is... Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is discussed in this paper,including blowing momentum and circumferential locations of the microblowing hole of 0.5 mm in diameter on nose tip.A new kind of active control technique,named perturbation-combined active control technique,which combines the micro-grain and micro-blowing perturbation,was proposed on the basis of the above.This control technique can not only change the sign of side force of slender body arbitrarily through changing the vortices positions between yaw-left and yaw-right configuration,but also can make the magnitude of side force variable gradually even at bistable state of asymmetric vortex.Finally,the interferential mechanism of the perturbation-combined active control technique has also been concluded from this paper.The tests have been conducted at low speed wind tunnel with subcritical Reynolds number of 1.05×10~5 at angle of attack α=50° in Beihang University,Beijing,China. 展开更多
关键词 asymmetric vortex perturbation-combined active flow control high angle of attack aerodynamics slender body
原文传递
Microjet flow control in an ultra-compact serpentine inlet 被引量:7
11
作者 Da Xingya Fan Zhaolin +3 位作者 Fan Jianchao Zeng Liquan Rui Wei Zhou Run 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1381-1390,共10页
Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are c... Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interthce plane (AIP) face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC) effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the monlcntunl coefficient affects the control effectiveness in a dual stepping manner. 展开更多
关键词 active flow control Distortion intensity:Micro jet Pressure recovery Serpentine inlet
原文传递
Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems 被引量:4
12
作者 Wei Shyy Young-Chang Cho +3 位作者 Wenbo Du Amit Gupta Chien-Chou Tseng Ann Marie Sastry 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期845-865,共21页
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which... Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging." 展开更多
关键词 Multi-scale mechanics ~ Cryogenic cavitating flow Surrogate-based modeling active flow control Engineering system
下载PDF
Experimental study on airfoil flow separation control via an air-supplement plasma synthetic jet 被引量:3
13
作者 Ru-Bing Liu Wen-Tao Wei +3 位作者 Hai-Peng Wan Qi Lin Fei Li Kun Tang 《Advances in Aerodynamics》 2022年第1期721-742,共22页
An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explo... An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explore the flow control effect and mechanism of the air-supplement actuator,via particle image velocimetry experiments in a low-speed wind tunnel,the flow field and boundary layer characteristics of a two-dimensional airfoil surface under different actuation states were compared for different attack angles and jet orifices.The experimental results show that,compared with the conventional actuation state,the jet energy of the air-supplement PSJ is higher and the indirect mixing effect of the counter-vortex sequence produced by the jet-mainstream interaction is stronger.Furthermore,the boundary layer mixing effect is better,which can further suppress flow separation and improve the critical flow separation attack angle.Moreover,increasing the jet momentum coefficient can enhance the flow control effect.The findings of this study could provide guidance for the flow control application of air-supplement PSJs. 展开更多
关键词 Plasma synthetic jet Check valve flow separation active flow control Air-supplement
原文传递
Circular cylinder wakes and their control under the influence of oscillatory flows: A numerical study 被引量:1
14
作者 Sridhar Muddada K.Hariharan +1 位作者 V.S.Sanapala B.S.V.Patnaik 《Journal of Ocean Engineering and Science》 SCIE 2021年第4期389-399,共11页
Understanding and control of wake vortices past a circular cylinder is a cardinal problem of interest to ocean engineering.The wake formation and vortex shedding behind a variety of ocean structures such as spars,are ... Understanding and control of wake vortices past a circular cylinder is a cardinal problem of interest to ocean engineering.The wake formation and vortex shedding behind a variety of ocean structures such as spars,are subjected to fatigue failure limiting their life span.The additional influences due to ocean waves and currents further exacerbate these effects.In the present study,flow past an isolated circu-lar cylindrical structure subjected to an oscillatory upstream are numerically investigated.These studies involve high resolution simulations over the low Reynolds number range(100-200).Although the prac-tical range of interest is in high Reynolds number range of 103-105,the flow physics and a number of qualitative and quantitative aspects are similar to the low Reynolds number flows.In the high Reynolds number range,statistical averaging tools in conjunction with suitable closure models would be neces-sary.The control of wake vortices is achieved with the aid of two small rotors located in the aft of the main cylinder.A control algorithm was coupled to determine the quantum of actuation to the rotating elements.Although control of wake vortices was observed for harmonic in-let forcing,residual vortical structures were found to persist at higher amplitudes of oscillation.To study the efficacy of this control,numerical simulations were further extended,when the circular cylinder was flexibly mounted.The con-trol of flow induced vibrations was observed to be reasonably effective in controlling the wake generated behind the main cylinder due to oscillatory upstream. 展开更多
关键词 active flow control Vortex shedding flow-induced vibrations Harmonic forcing Fluid-structure interaction Computational fluid dynamics
原文传递
Virtual flight test of pitch and roll attitude control based on circulation control of tailless flying wing aircraft without rudders 被引量:3
15
作者 Liu ZHANG Yong HUANG +4 位作者 Zhenglong ZHU Lihua GAO Fuzheng CHEN Fuzhang WU Meng HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期52-62,共11页
Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder... Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder surface is proposed based on the tailless flying wing aircraft. The closed-loop jet actuator system and stepless rudder surface switching control strategy are used to quantitatively study the control characteristics of circulation actuator for pitch and roll attitude through 3-DOF virtual flight test in a wind tunnel with a powered model at wind speed of 40 m/s. The results show that the combined use of circulation actuators can achieve bidirectional continuous and stable control of the aircraft’s pitch and roll attitude, with the maximum pitch rate of 12.3(°)/s and the maximum roll rate of 21.5(°)/s;the response time of attitude angular rate varying with the jet pressure ratio is less than 0.02 s, which can satisfy the control response requirements of aircraft motion stability for the control system;the jet rudder surface has a strong moment control ability, and the pitch moment of the jet elevator with a pressure ratio of 1.28 is the same as that of the mechanical elevator with 28° rudder deflection, which can expand the flight control boundary. 展开更多
关键词 active flow control Circulation control(CC) Flying wing Wind tunnel test Virtual flight test
原文传递
Numerical investigation of co-flow jet airfoil with parabolic flap
16
作者 Ruochen WANG Xiaoping MA +2 位作者 Guoxin ZHANG Pei YING Xiangyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期78-95,共18页
Both the Active Flow Control(AFC)and the variable-camber technology are considered as efficient ways to enhance the aerodynamic performance of an aircraft.The present study investigated the feasibility of the combinat... Both the Active Flow Control(AFC)and the variable-camber technology are considered as efficient ways to enhance the aerodynamic performance of an aircraft.The present study investigated the feasibility of the combination of a Co-Flow Jet(CFJ)airfoil and a parabolic flap,where the Reynolds Average Navier-Stokes(RANS)equations and the Spalart-Allmaras(S-A)turbulence model were exploited for the numerical simulation.Several significant geometric parameters,including the injection slot location,the suction slot location,the injection slot angle,the suction slot angle and the airfoil Suction Surface Translation(SST),were selected to study their effects on the aerodynamics of the proposed configuration.Then,an optimized design was created and compared with the baseline airfoil.The results show that the CFJ airfoil combined with the parabolic flap is more beneficial to the aerodynamic performance enhancement at small angles of attack.It is preferable to locate the injection slot at a 2%chord-wise location and the suction slot at a 75%chord-wise location.Both the decrease of the injection slot angle and the augmentation of the suction slot angle could reduce the drag.Furthermore,the SST of 0.5%chord is selected due to its high gain in the corrected aerodynamic efficiency at small angles of attack.Compared with the baseline,the optimized design could increase the lift coefficient and the corrected lift-to-drag ratio by 32.1%and 93.8%respectively at the angle of attack a=4°. 展开更多
关键词 active flow control Aerodynamic performance Co-flow jet Parabolic flap Variable-camber technology
原文传递
Control strategies for aircraft airframe noise reduction 被引量:15
17
作者 Li Yong Wang Xunnian Zhang Dejiu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期249-260,共12页
With the development of low-noise aircraft engine, airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase. Noise control efforts have therefore been extensively ... With the development of low-noise aircraft engine, airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase. Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise. In this review, various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized. We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings, deceleration plates, splitter plates, acoustic liners, slat cove cover and side-edge replacements, and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction, such as plasma technique and air blowing/suction devices. Based on the knowledge gained throughout the extensively noise control testing, a few design concepts on the landing gear, high-lift devices and whole aircraft are provided for advanced aircraft low-noise design. Finally, discussions and suggestions are given for future research on airframe noise reduction. 展开更多
关键词 active flow control Airframe noise High-lift devices Landing gear Passive control method
原文传递
Effect of three-electrode plasma synthetic jet actuator on shock wave control 被引量:16
18
作者 ZHOU Yan XIA ZhiXun +1 位作者 LUO ZhenBing WANG Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第1期146-152,共7页
A three-electrode high-energy plasma synthetic jet(PSJ) actuator was used for shock wave control. This actuator is an enhanced version of the two-electrode actuator as a high-voltage trigger electrode is added to incr... A three-electrode high-energy plasma synthetic jet(PSJ) actuator was used for shock wave control. This actuator is an enhanced version of the two-electrode actuator as a high-voltage trigger electrode is added to increase the cavity volume and the input energy while retaining a relatively low disruptive voltage. The electrical properties were studied using current-voltage measurements, and the energy consumption was calculated. To assess the jet strength, the penetration of PSJ was compared with empirical values, and the results show that the momentum flux ratio of PSJ for a capacitance of 0.96, 1.6, and 3 μF was approximately equal to 0.6, 1.0, and 1.3, respectively. The interaction of PSJ with shock waves was acquired using high-speed shadowgraph imaging. The shock was generated by a 25° compression ramp in Mach 2 flow, and PSJ actuator was placed up-stream of the compression ramp. Under the action of PSJ, the strength of the shock was notably weakened, and the near-wall part of the shock was entirely eliminated. The results show the good control effect of the three-electrode high-energy PSJ in high-speed flow. 展开更多
关键词 plasma synthetic jet three-electrode shock wave active flow control
原文传递
Numerical Study of Dual Sweeping Jet Actuators for Corner Separation Control in Compressor Cascade 被引量:2
19
作者 MENG Qinghe DU Xin +1 位作者 CHEN Shaowen WANG Songtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期201-209,共9页
Unsteady behaviors are important issues in flow control of turbomachinery.Pulsed excitation or suction is widely investigated in compressor cascades.This paper presents a discussion on the unsteady flow control realiz... Unsteady behaviors are important issues in flow control of turbomachinery.Pulsed excitation or suction is widely investigated in compressor cascades.This paper presents a discussion on the unsteady flow control realized by dual sweeping jet actuator(SJA)located on the blade suction surface.The unsteady numerical simulations were utilized to study the effect of applying dual SJAs on controlling the corner separation.With the numerical results,the following conclusions could be drawn with current compressor cascade.A maximum total pressure loss coefficient reduction of 6.8%was obtained.The analysis of the flow field pointed out that the regulation mechanisms of the corner separation were different with each SJA.The SJA ahead achieved an interruption of the suction side boundary layer development and the rear SJA enhanced the interaction and entrainment between the excitation stream and the secondary flows.Meanwhile,the different unsteadiness structures of the flow field frequency spectrum compared with single SJA cases were identified.The first peak frequency corresponded to the difference of the two SJAs and the rest frequencies could be regulated to a base frequency and its harmonic frequencies. 展开更多
关键词 sweeping jet actuator compressor cascade active flow control corner separation
原文传递
Metamodeling-based parametric optimization of DBD plasma actuation to suppress flow separation over a wind turbine airfoil model 被引量:1
20
作者 Ramsankar Veerakumar Vishal Raul +3 位作者 Yang Liu Xiaodong Wang Leifur Leifsson Hui Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期260-274,共15页
While dielectric-barrier-discharge(DBD)based plasma actuation systems have been successfully demonstrated to suppress massive flow separation over wind turbine blades to reduce the transient aerodynamic loadings actin... While dielectric-barrier-discharge(DBD)based plasma actuation systems have been successfully demonstrated to suppress massive flow separation over wind turbine blades to reduce the transient aerodynamic loadings acting on the turbine blades,it is still a non-trivial task to establish a best combination of various operating parameters for a DBD plasma actuation system to achieve the optimized flow control effectiveness.In the present study,a regression Kriging based metamodeling technique is developed to optimize the operating parameters of a DBD plasma actuation system for suppressing deep stall over the surface of a wind turbine blade section/airfoil model.The data points were experimentally obtained by embedding a nanosecond-pulsed DBD(NS-DBD)plasma actuator at the leading edge of the airfoil model.The applied voltage and frequency for the NS-DBD plasma actuation were used as the design variables to demonstrate the optimization procedure.The highest possible lift coefficient of the turbine airfoil model at deep stalled angles of attack(i.e.,α?=?22°and 24°)were selected as the objective function for the optimization.It was found that,while the metamodeling-based procedure could accurately predict the objective function within the bounds of the design variables with an uncertainty~?2%,a global accuracy level of~?97%was achieved within the whole design space. 展开更多
关键词 Wind turbine aerodynamics Dielectric-barrier-discharge(DBD)plasma actuation active flow control Wind turbine airfoil stall suppression
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部