Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed contr...Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.展开更多
Smweillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation,...Smweillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires exfmasive DSPs or embedded processors. This paper proposes a novel motion tracking trait based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FFGAs ) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveil system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking trait is 100 MHz.展开更多
Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee...Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.展开更多
A tracking filter algorithm based on the maneuvering detection delay is presented in order to solve the fuzzy problem of target maneuver decision introduced by the measure?ment errors of active sonar. When the maneuv...A tracking filter algorithm based on the maneuvering detection delay is presented in order to solve the fuzzy problem of target maneuver decision introduced by the measure?ment errors of active sonar. When the maneuvering detection is unclear, two target moving hypotheses, the uniform and the maneuver, derived from the method of multiple hypothesis tracking, are generated to delay the final decision time. Then the hypothesis test statistics is constructed by using the residual sequence. The active sonar?s tracking ability of unknown prior information targets is improved due to the modified sequential probability ratio test and the integration of the advantages of strong tracking filter and the Kalman filter. Simulation results show that the algorithm is able to not only track the uniform targets accurately, but also track the maneuvering targets steadily. The effectiveness of the algorithm for real underwater acoustic targets is further verified by the sea trial data processing results.展开更多
Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic...Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic control systems(ACS).In this paper,different methods of voltage-frequency and phase-difference control are analyzed,and a control methodology based on active frequency tracking(AFT)is presented.Through the establishment of the multi-point automatic synchronization model and the analysis of the governor transfer function with this control method,the important control parameters and automatic process control sequence are summarized.The correctness and effectiveness of the designed methodology are inspected through on-site testing,and the importance of the function and selection of parameters are also explored.展开更多
Lack of physical activity is becoming a killer of our healthy life. As a solution for this negative impact, we propose SmartCare to help users to set up a healthy physical activity habit. SmartCare can monitor a user...Lack of physical activity is becoming a killer of our healthy life. As a solution for this negative impact, we propose SmartCare to help users to set up a healthy physical activity habit. SmartCare can monitor a user's activities over a long time, and then provide activity quality assessment and suggestion. SmartCare consists of three parts, activity recognition, energy saving, and health feedback. Activity recognition can recognize nine kinds of daily activities. A hybrid classifier that uses less power and memory with satisfactory accuracy was designed and implemented by utilizing the periodicity of target activity. In addition, a learning-based energy saver was introduced to reduce energy consumption by adjusting sampling rates and the set of features adaptively. Based on the type and duration of the activity recorded, health feedback in terms of the calorie burned was given. The system could provide quantitative activity quality assessment and recommend future physical activity plans. Through extensive real-life testing, the system is shown to achieve an average recognition accuracy of 98.0% with a minimized energy expenditure.展开更多
Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews sta...Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews state-of-the-art wearable sensors for activity monitoring and motion control.Different technologies,including electromechanical,bioelectrical,and biomechanical sensors,are reviewed,along with their broad applications.Moreover,an overview of existing commercial wearable products and the computation methods for motion analysis are provided.Future research issues are identified and discussed.展开更多
Improving simulation performance using activity tracking has attracted attention in the modeling field in recent years.The reference to activity has been successfully used to predict and promote the simulation perform...Improving simulation performance using activity tracking has attracted attention in the modeling field in recent years.The reference to activity has been successfully used to predict and promote the simulation performance.Tracking activity,however,uses only the inherent performance information contained in the models.To extend activity prediction in modeling,we propose the activity enhanced modeling with an activity meta-model at the meta-level.The meta-model provides a set of interfaces to model activity in a specific domain.The activity model transformation in subsequence is devised to deal with the simulation difference due to the heterogeneous activity model.Finally,the resource-aware simulation framework is implemented to integrate the activity models in activity-based simulation.The case study shows the improvement brought on by activity-based simulation using discrete event system specification(DEVS).展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA8082065)the National Natural Science Foundation of China(No.61205143)
文摘Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.
基金sponsored by the MKE(The Ministry of Knowledge Economy,Korea),the ITRC(Information Technology Research Center)support program(NIPA-2009-(C1090-0902-0007))the System Semiconductor Industry Development Center,Human Resource Development Project for IT SOC Architecture
文摘Smweillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires exfmasive DSPs or embedded processors. This paper proposes a novel motion tracking trait based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FFGAs ) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveil system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking trait is 100 MHz.
基金Supported by National Natural Science Foundation of China(Grant No.51375009)PhD Research Foundation of Liaocheng University,China(Grant No.318051523)Tsinghua University Initiative Scientific Research Program,China
文摘Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.
文摘A tracking filter algorithm based on the maneuvering detection delay is presented in order to solve the fuzzy problem of target maneuver decision introduced by the measure?ment errors of active sonar. When the maneuvering detection is unclear, two target moving hypotheses, the uniform and the maneuver, derived from the method of multiple hypothesis tracking, are generated to delay the final decision time. Then the hypothesis test statistics is constructed by using the residual sequence. The active sonar?s tracking ability of unknown prior information targets is improved due to the modified sequential probability ratio test and the integration of the advantages of strong tracking filter and the Kalman filter. Simulation results show that the algorithm is able to not only track the uniform targets accurately, but also track the maneuvering targets steadily. The effectiveness of the algorithm for real underwater acoustic targets is further verified by the sea trial data processing results.
文摘Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic control systems(ACS).In this paper,different methods of voltage-frequency and phase-difference control are analyzed,and a control methodology based on active frequency tracking(AFT)is presented.Through the establishment of the multi-point automatic synchronization model and the analysis of the governor transfer function with this control method,the important control parameters and automatic process control sequence are summarized.The correctness and effectiveness of the designed methodology are inspected through on-site testing,and the importance of the function and selection of parameters are also explored.
基金partially supported by the National Natural Science Foundation of China (Nos. 61190110, 61272456, and 61472312)the open fund ITDU14004/KX142600011+1 种基金supported by the overall innovation project of Shaanxi Province Science and Technology Plan (No. 2012KTZD02-03-03)the Fundamental Research Funds for the Central Universities (Nos. JB151002, K5051323005, and BDY041409)
文摘Lack of physical activity is becoming a killer of our healthy life. As a solution for this negative impact, we propose SmartCare to help users to set up a healthy physical activity habit. SmartCare can monitor a user's activities over a long time, and then provide activity quality assessment and suggestion. SmartCare consists of three parts, activity recognition, energy saving, and health feedback. Activity recognition can recognize nine kinds of daily activities. A hybrid classifier that uses less power and memory with satisfactory accuracy was designed and implemented by utilizing the periodicity of target activity. In addition, a learning-based energy saver was introduced to reduce energy consumption by adjusting sampling rates and the set of features adaptively. Based on the type and duration of the activity recorded, health feedback in terms of the calorie burned was given. The system could provide quantitative activity quality assessment and recommend future physical activity plans. Through extensive real-life testing, the system is shown to achieve an average recognition accuracy of 98.0% with a minimized energy expenditure.
基金supported by the Region Nordjylland Health Hub Project SLAM and the National Natural Science Foundation of China(62073224)the financial support from the China Scholarships Council for her study at Aalborg University,Denmark.
文摘Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews state-of-the-art wearable sensors for activity monitoring and motion control.Different technologies,including electromechanical,bioelectrical,and biomechanical sensors,are reviewed,along with their broad applications.Moreover,an overview of existing commercial wearable products and the computation methods for motion analysis are provided.Future research issues are identified and discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.71303252 and 91024030)
文摘Improving simulation performance using activity tracking has attracted attention in the modeling field in recent years.The reference to activity has been successfully used to predict and promote the simulation performance.Tracking activity,however,uses only the inherent performance information contained in the models.To extend activity prediction in modeling,we propose the activity enhanced modeling with an activity meta-model at the meta-level.The meta-model provides a set of interfaces to model activity in a specific domain.The activity model transformation in subsequence is devised to deal with the simulation difference due to the heterogeneous activity model.Finally,the resource-aware simulation framework is implemented to integrate the activity models in activity-based simulation.The case study shows the improvement brought on by activity-based simulation using discrete event system specification(DEVS).