Based on the high-accuracy data obtained from the GPS measurements carried out in 1992, 1995 and 1996, the isochronous active units with different kinematic property inside the North China area have been distinguished...Based on the high-accuracy data obtained from the GPS measurements carried out in 1992, 1995 and 1996, the isochronous active units with different kinematic property inside the North China area have been distinguished, 4 active units and 1 transition zone with distinct differential movement have been determined. They are Ordos-Yinshan unit, Yanshan unit, Shanxi-Hebei-Shandong (Jin-Ji-Lu) unit, Jiaodong-Liaoning-Shandong (Jiao-Liao-Lu) unit and Yanshan-Hebei (Yan-Ji) transition zone. The relative movements among the neighboring units in this period have been given. ① The compressive movement between Ordos-Yinshan unit and Yanshan unit is not obvious with an amount of 0.4(1.3 mm/a.②in-Ji-Lu unit moves E40(S off the Ordos-Yinshan unit and the magnitude is 4.4(1.0 mm/a. ③elative to the Yan-Ji transition zone of differential movement, Yanshan unit shifts W38(N with a value of 2.4(1.3 mm/a and Jin-Ji-Lu unit moves eastward 35( by south with an amount of 2.3(0.9 mm/a. ④Jin-Ji-Lu unit has a tensional left-lateral movement of 4.7(1.4 mm/a in the direction of E37(S relative to Yanshan unit. ⑤ Some area near Tanlu belt which is located in the southern part of Jin-Ji-Lu block has a southward movement 14( by west with a magnitude of 1.5(1.1 mm/a off the Jin-Ji-Lu unit. ⑥ Relative to Jin-Ji-Lu unit, Jiao-Liao-Lu unit has a trend of clockwise movement with a tensional right-lateral motion at the north end which neighbors Yanshan unit and a compressive motion at the south end. It should be noted that the errors given in the paper are obtained based on the divergence among the displacements of the sites in the unit, rather than the value calculated from the displacement error of the sites. The analyzed results indicate that: ① Shanxi tectonic zone and Yan-Ji transition zone are the major tectonic active zones to show the frame and magnitude of interior relative movement in North China area, and others are the secondary tectonic active zones; ② The complete horizontal deformation in the North China area is not homogeneous nor successive; ③ The kinetic model of North China area might be (mantle dragging plus boundary coupling(.展开更多
This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadr...This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.展开更多
It is vital to recognize the intention of finger motions for human-machine interaction(HMI).The latest research focuses on fine myoelectric control through the decoding of neural motor unit action potential trains(MUA...It is vital to recognize the intention of finger motions for human-machine interaction(HMI).The latest research focuses on fine myoelectric control through the decoding of neural motor unit action potential trains(MUAPt) from high-density surface electromyographic(sEMG) signals.However,the existing EMG decoding algorithms rarely obtain the spatial matching relationship between decoded motion units(MU) and designated muscles,and the control interface can only recognize the trained hand gestures.In this study,a semi-supervised HMI based on MU-muscle matching(MMM) is proposed to recognize individual finger motions and even the untrained combined multi-finger actions.Through automatic channel selection from high-density s EMG signals,the optimal spatial positions to monitor the MU activation of finger muscles are determined.Finger tapping experiment is carried out on ten subjects,and the experimental results show that the proposed s EMG decomposition algorithm based on MMM can accurately identify single finger motions with an accuracy of 93.1%±1.4%,which is comparable to that of state-of-the-art pattern recognition methods.Furthermore,the MMM allows unsupervised recognizing the untrained combined multi-finger motions with an accuracy of 73%±3.8%.The outcomes of this study benefit the practical applications of HMI,such as controlling prosthetic hand and virtual keyboard.展开更多
基金The National Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040700).
文摘Based on the high-accuracy data obtained from the GPS measurements carried out in 1992, 1995 and 1996, the isochronous active units with different kinematic property inside the North China area have been distinguished, 4 active units and 1 transition zone with distinct differential movement have been determined. They are Ordos-Yinshan unit, Yanshan unit, Shanxi-Hebei-Shandong (Jin-Ji-Lu) unit, Jiaodong-Liaoning-Shandong (Jiao-Liao-Lu) unit and Yanshan-Hebei (Yan-Ji) transition zone. The relative movements among the neighboring units in this period have been given. ① The compressive movement between Ordos-Yinshan unit and Yanshan unit is not obvious with an amount of 0.4(1.3 mm/a.②in-Ji-Lu unit moves E40(S off the Ordos-Yinshan unit and the magnitude is 4.4(1.0 mm/a. ③elative to the Yan-Ji transition zone of differential movement, Yanshan unit shifts W38(N with a value of 2.4(1.3 mm/a and Jin-Ji-Lu unit moves eastward 35( by south with an amount of 2.3(0.9 mm/a. ④Jin-Ji-Lu unit has a tensional left-lateral movement of 4.7(1.4 mm/a in the direction of E37(S relative to Yanshan unit. ⑤ Some area near Tanlu belt which is located in the southern part of Jin-Ji-Lu block has a southward movement 14( by west with a magnitude of 1.5(1.1 mm/a off the Jin-Ji-Lu unit. ⑥ Relative to Jin-Ji-Lu unit, Jiao-Liao-Lu unit has a trend of clockwise movement with a tensional right-lateral motion at the north end which neighbors Yanshan unit and a compressive motion at the south end. It should be noted that the errors given in the paper are obtained based on the divergence among the displacements of the sites in the unit, rather than the value calculated from the displacement error of the sites. The analyzed results indicate that: ① Shanxi tectonic zone and Yan-Ji transition zone are the major tectonic active zones to show the frame and magnitude of interior relative movement in North China area, and others are the secondary tectonic active zones; ② The complete horizontal deformation in the North China area is not homogeneous nor successive; ③ The kinetic model of North China area might be (mantle dragging plus boundary coupling(.
文摘This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.
基金supported in part by the China National Key R&D Program(Grant No.2018YFB1307200)the National Natural Science Foundation of China (Grant Nos.51905339&91948302)。
文摘It is vital to recognize the intention of finger motions for human-machine interaction(HMI).The latest research focuses on fine myoelectric control through the decoding of neural motor unit action potential trains(MUAPt) from high-density surface electromyographic(sEMG) signals.However,the existing EMG decoding algorithms rarely obtain the spatial matching relationship between decoded motion units(MU) and designated muscles,and the control interface can only recognize the trained hand gestures.In this study,a semi-supervised HMI based on MU-muscle matching(MMM) is proposed to recognize individual finger motions and even the untrained combined multi-finger actions.Through automatic channel selection from high-density s EMG signals,the optimal spatial positions to monitor the MU activation of finger muscles are determined.Finger tapping experiment is carried out on ten subjects,and the experimental results show that the proposed s EMG decomposition algorithm based on MMM can accurately identify single finger motions with an accuracy of 93.1%±1.4%,which is comparable to that of state-of-the-art pattern recognition methods.Furthermore,the MMM allows unsupervised recognizing the untrained combined multi-finger motions with an accuracy of 73%±3.8%.The outcomes of this study benefit the practical applications of HMI,such as controlling prosthetic hand and virtual keyboard.