期刊文献+
共找到1,109篇文章
< 1 2 56 >
每页显示 20 50 100
One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton 被引量:5
1
作者 Maowen Sun Xiaoping Ouyang +2 位作者 Jouni Mattila Huayong Yang Gang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期20-29,共10页
The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centraliz... The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times. 展开更多
关键词 Hydraulic actuating system(HAS) Lower-body exoskeletons Lightweight and integrated System identification Working mode test
下载PDF
THEORETICAL AND EXPERIMENTAL STUDY ON THE PIEZOCERAMIC ACTUATING LAMINATE
2
作者 万建国 陶宝祺 朱纪军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期90-97,共8页
Piezoelectric ceramic element (PCE) is a kind of actuator applied widely on the intelligent material & structure. Establishing the relationship between the transferring stress and the controlling signal, namely t... Piezoelectric ceramic element (PCE) is a kind of actuator applied widely on the intelligent material & structure. Establishing the relationship between the transferring stress and the controlling signal, namely the transferring and actuating equation, is a key step to analyze the actuating performance of the PCE. Based on the method of the shear lag theory, the procedure of the stress transferring is analyzed and the transferring and actuating model is established in this paper. Some measurements for PCE(PZT5) actuating the Glass Fiber/Epoxy laminate have been done to verify the model established. The experimental results show that the theoretical model agrees well with the practice. Finally, the effect of the main factors on PCE actuating the laminate is studied by using the experimental and theoretical results. 展开更多
关键词 piezoelectric ceramics LAMINATES actuate transfer affecting factors
下载PDF
Study and Analysis of a Landing Gear Actuating Cylinder Inner-lock 被引量:1
3
作者 AO Wen-wei PEI Hua-ping CHEN Hong WU Yun-sheng 《International Journal of Plant Engineering and Management》 2011年第2期97-103,共7页
Three kinds of landing gear actuating cylinder inner-locks of an aircrafi : block ring lock, steel ball lock, finger lock are taken as the study object based on the mechanics, geometry, materials, technology etc and ... Three kinds of landing gear actuating cylinder inner-locks of an aircrafi : block ring lock, steel ball lock, finger lock are taken as the study object based on the mechanics, geometry, materials, technology etc and some aircrafi typical inner-lock practical applications. The working principle of the three typical actuating cylinder innerlocks are expounded and the stress and workmanship requirements of the three inner-lock core components are analyzed. The advantages and disadvantages of different kinds are compared and the characteristics and applications of the three inner-locks investigated. The research and analysis results provide valuable information for the actuating cylinder inner-lock of the aircraft landing gear design. 展开更多
关键词 actuating cylinder inner-lock core components workmanship requirements
下载PDF
Characteristic of Intelligent Air Bag Venting Structure Actuating by Electrostrictive Stack Actuator
4
作者 戈嗣诚 《Journal of Southeast University(English Edition)》 EI CAS 2002年第2期119-122,共4页
In this paper the conception of smart materials and structures is firstly combined with research of air bag,and the main theory of self adapting cushioning of intelligent air bag is expatiated.The intelligent venting... In this paper the conception of smart materials and structures is firstly combined with research of air bag,and the main theory of self adapting cushioning of intelligent air bag is expatiated.The intelligent venting structure is the main part affecting the cushioning result.Electrostrictive material was found having big force,high response speed and wide linearity,and it is fit to utilize in intelligent venting structure. The characteristic of the dynamic response and cushioning actuating of an electrostrictive stack actuator is analyzed,and the result of the computer simulation of the fuzzy control to intelligent venting structure is given.It is concluded that intelligent venting structure has good actuating characteristic and can satisfy the need of intelligent air bag. 展开更多
关键词 intelligent air bag electrostrictive stack actuator venting structure
下载PDF
Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process
5
作者 Siyin ZHOU Xueke CHE +1 位作者 Wansheng NIE Di WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第6期114-124,共11页
The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the ... The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes.Both the discharge products and the detonation forming process assisted by the plasma were analyzed.It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters.However,the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone,and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species.Adopting a larger discharge gap results in a lower concentration of the active species,and all species have the same sensitivity to the variations of the gap.With respect to the reaction flow of the detonation tube,the corresponding deflagration to detonation transition(DDT) time and distance become slightly longer when a higher actuating voltage is chosen.The acceleration effect of plasma is more prominent with a smaller discharge gap,and the benefit builds gradually throughout the DDT process.Generally,these two control parameters have little effect on the amplitude of the flow field parameters,and they do not alter the combustion degree within the reaction zone. 展开更多
关键词 actuating voltage discharge gap dielectric barrier discharge plasma assisted detonation DDT
下载PDF
Effect of actuating frequency on plasma assisted detonation initiation
6
作者 周思引 车学科 +1 位作者 王迪 聂万胜 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期468-475,共8页
Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiat... Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone. 展开更多
关键词 alternating current dielectric barrier discharge plasma assisted detonation initiation actuating frequency deflagration to detonation active particles
下载PDF
Bio-inspired Actuating System for Swimming Using Shape Memory Alloy Composites 被引量:2
7
作者 Minoru Taya 《International Journal of Automation and computing》 EI 2006年第4期366-373,共8页
The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (... The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz. 展开更多
关键词 Ferromagnetic shape memory alloy (FSMA) SUPERELASTICITY robotic fish hybrid mechanism ACTUATOR thunniform mode swimming Reynolds number Strouhal number
下载PDF
Electrostatic Actuating Bendable Flat Electrode for Micro Electrochemical Machining 被引量:1
8
作者 Ruining Huang Xiaokun Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第2期133-137,共5页
In micro-electrochemical machining(μECM), material dissolution takes place at very close vicinity of tool electrode due to localization of electric field. Controlling the gap between tool electrode and workpiece is t... In micro-electrochemical machining(μECM), material dissolution takes place at very close vicinity of tool electrode due to localization of electric field. Controlling the gap between tool electrode and workpiece is the key to μECM. Therefore, a new method is proposed to solve a variety of problems in small gap control. In the present context, experiments were carried out with an indigenously developed setup to fabricate cylindrical arrays. During the machining process, the flat electrode bends due to electrostatic force in pulse on-time, which self-adaptively narrows the gap between the electrode and the workpiece. The workpiece material will be removed once the gap meets the processing condition. Therefore, this method has advantages of reducing dependence on high precision machine tools and of avoiding complex servo control. The flat electrode quickly restores to its original condition when it is in pulse off-time, making the gap much larger than that in traditional electrochemical machining(ECM). The large gap benefits debris removing, which improves the machining accuracy. The influence of different experimental parameters on accuracy and efficiency during the machining process has been investigated. It is observed that with the increase in applied voltage or concentration of electrolyte, the material removal rate and the process gap both increase. The detailed analysis of the experimental results is described in this paper. 展开更多
关键词 μECM Flat electrode Electrostatic actuation Current density Gap control
下载PDF
Ant-nest-inspired porous structure for MXene composites with high-performance energy-storage and actuating multifunctions
9
作者 Yi Wang Guanfeng Xue +2 位作者 Zhiling Luo Wei Zhang Luzhuo Chen 《Nano Research》 SCIE EI CSCD 2024年第7期6673-6685,共13页
Integrating energy-storage devices(supercapacitors)and shape-deformation devices(actuators)advances the miniaturization and multifunctional development of soft robots.However,soft robots necessitate supercapacitors wi... Integrating energy-storage devices(supercapacitors)and shape-deformation devices(actuators)advances the miniaturization and multifunctional development of soft robots.However,soft robots necessitate supercapacitors with high energy-storage performance and actuators with excellent actuation capability.Here,inspired by ant nests,we present a porous structure fabricated by MXene-graphene-methylcellulose(M-GMC)composite,which overcomes the self-stacking of MXene nanosheets and offers a larger specific surface area.The porous structure provides more channels and active sites for electrolyte ions,resulting in high energy storage performance.The areal capacitance of the M-GMC electrode reaches up to 787.9 mF·cm^(−2),significantly superior to that of the pristine MXene electrode(449.1 mF·cm^(−2)).Moreover,the M-GMC/polyethylene bilayer composites with energy storage and multi-responsive actuation functions are developed.The M-GMC is used as the electrode and the polyethylene is used as the encapsulation layer of the quasi-solid-state supercapacitor.Meanwhile,the actuators fabricated by the bilayer composites can be driven by light or low voltage(≤9 V).The maximum bending curvature is up to 5.11 cm^(−1).Finally,a smart gripper and a fully encapsulated smart integrated circuit based on the M-GMC/polyethylene are designed.The smart gripper enables programmable control with multi-stage deformations.The applications realize the intelligence and miniaturization of soft robots.The ant-nest-inspired M-GMC composites would provide a promising development strategy for soft robots and smart integrated devices. 展开更多
关键词 MXene graphene ant nest SUPERCAPACITOR actuator multi-functional
原文传递
Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities 被引量:3
10
作者 Neng Chen Yang Zhou +10 位作者 Yinping Liu Yuanyuan Mi Sisi Zhao Wang Yang Sai Che Hongchen liu FengJiang Chen Chong Xu Guang Ma Xue Peng Yongfeng Li 《Nano Research》 SCIE EI CSCD 2022年第8期7703-7712,共10页
Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an ... Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an invisible environment.Therefore,it is of great significance to develop a self-sensing and self-actuating dual-function hydrogel actuator system to realize real-time monitoring.Here,we report a bifunctional hydrogel system with self-actuating and self-monitoring abilities,which combines the functions of photothermal actuation and electrical resistance sensing into a single material.The bilayer tough conductive hydrogel synthesized by unconventional complementary concentration recombination and cryogenic freezing technique presents a dense conductive network and high-porosity structure,achieving high toughness at 190.3 kPa of tensile strength,high stretchability(164.3%strain),and the toughness dramatically(1,471.4 kJ·m^(−3)).The working mechanism of the monitoring and self-sensing system is accomplished through the integrated monitoring device of surface temperature–bending angle–electron current,to solve the problem of not apperceiving actuator motion state when encountering obstacles in an invisible environment.We demonstrated for the first time a photothermal actuator’s motion of a football player and goalkeeper to finish the penalty and a soft actuator hand,which can achieve the action of sticking to grab and release under photo-thermal actuation.When connected to the control closed circuit,the actuator realized closed-loop monitoring and sensing feedback.The development of bifunctional hydrogel systems may bring new opportunities and ideas in the fields of material science,circuit technology,sensors,and mechanical engineering. 展开更多
关键词 photo-thermal hydrogel actuator graphene nanosheets SELF-MONITORING self-actuating surface temperature-bending angle-electron current
原文传递
Anisotropic nanocomposite hydrogels with enhanced actuating performance through aligned polymer networks 被引量:3
11
作者 Ping Tang Hao Yan +5 位作者 Lie Chen Qingshan Wu Tianyi Zhao Shuhong Li Hainan Gao Mingjie Liu 《Science China Materials》 SCIE EI CSCD 2020年第5期832-841,共10页
Anisotropic composite hydrogels have wide applications in the fields of materials for actuators and sensors.Herein,we report an anisotropic composite hydrogel prepared by a mechanical-strain-induced method.Polymer net... Anisotropic composite hydrogels have wide applications in the fields of materials for actuators and sensors.Herein,we report an anisotropic composite hydrogel prepared by a mechanical-strain-induced method.Polymer networks including poly(N-isopropylacrylamide)(PNIPAM)and sodium alginate(SA),as well as carbon nanotubes(CNTs)are found to align simultaneously by stretching,and then fixed by physical crosslinking through non-covalent bonds.Composite hydrogels with doubly aligned polymer networks showed anisotropic optical and mechanical properties.The actuation performance of the anisotropic composite hydrogels as compared with the isotropic ones was found to be enhanced,which showed the capability of lifting 100 times its weight with 20%contraction strain.Besides,a bilayer hydrogel was designed to bend with a maximum of 390°to mimic the tendril behavior of plants. 展开更多
关键词 ANISOTROPIC PNIPAM-based HYDROGELS interpenetrating POLYMER network ACTUATION
原文传递
Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions 被引量:3
12
作者 Peidi Zhou Wei Zhang +4 位作者 Luzhuo Chen Jian Lin Zhiling Luo Changhong Liu Kaili Jiang 《Nano Research》 SCIE EI CSCD 2021年第7期2456-2462,共7页
Multifunctionality has become a mainstream trend in the development of smart clothing and flexible wearable devices.Nevertheless,it remains a grand challenge to realize multiple functions,such as sensing,actuating and... Multifunctionality has become a mainstream trend in the development of smart clothing and flexible wearable devices.Nevertheless,it remains a grand challenge to realize multiple functions,such as sensing,actuating and information displaying,in one single multifunctional material.Here,we present one multifunctional integration strategy by employing monolithic superaligned carbon nanotube(SACNT)composite,which can leverage three different functions through fascinating features of SACNT.Firstly,by using thermochromic dye as a color-memorizing component and SACNT as a photothermal converter,the composite film can be utilized as a flexible rewritable medium.It demonstrates excellent rewriting performances(reversibility>500 times).Secondly,the composite can be tailored to fabricate an actuator,when its length direction is along the SACNT alignment.The actuator shows a bending-morphing when illuminated by near-infrared light.The morphing is attributed to a large difference in volume change between the SACNT and polymer when the SACNT absorbs the optical energy and heats the composite.Thirdly,owing to the unique anisotropy of SACNT,the composite is easily to be stretched in the direction perpendicular to the SACNT alignment,accompanied by a change in electrical resistance.Therefore,the composite is able to be used as a strain sensor.Finally,we fabricate two smart wearable devices to demonstrate the applications,which realize the functions of human-motion detection(sensing)and rewritable information display(rewriting)simultaneously.This multifunctional SACNT composite is expected to have potential applications in the next-generation wearable devices,smart clothing and so on. 展开更多
关键词 carbon nanotube ACTUATOR sensor rewritable media MULTIFUNCTIONAL
原文传递
Docker API与SpringBoot Actuator未授权访问风险分析与防范研究
13
作者 贾美娟 李欣 +2 位作者 朱庆 张丽华 张百顺 《电脑与电信》 2024年第6期22-25,30,共5页
随着云计算技术的普及和容器化技术的发展,Docker和SpringBoot已成为现代软件开发和部署的重要工具。然而,这种广泛的使用也伴随着安全风险。针对DockerAPI与SpringBoot Actuator的未授权访问风险进行了深入分析。当这些关键组件暴露于... 随着云计算技术的普及和容器化技术的发展,Docker和SpringBoot已成为现代软件开发和部署的重要工具。然而,这种广泛的使用也伴随着安全风险。针对DockerAPI与SpringBoot Actuator的未授权访问风险进行了深入分析。当这些关键组件暴露于未授权访问之下时,攻击者可能利用这些漏洞执行恶意操作,如部署恶意容器、篡改应用程序配置或窃取敏感信息。这些行为不仅可能导致服务中断和数据泄露,还可能对企业造成严重的声誉和财务损失。 展开更多
关键词 Docker API SpringBoot Actuator 未授权访问 风险分析与防范
下载PDF
Observer-based robust high-order fully actuated attitude autopilot design for spinning glide-guided projectiles 被引量:2
14
作者 Wei Wang Yuchen Wang +2 位作者 Shiwei Chen Yongcang Guo Zhongjiao Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期282-294,共13页
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor... This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations. 展开更多
关键词 Spinning glide-guided projectile Attitude control Sliding mode disturbance observer Fixed-time stable theory High-order fully actuated approach
下载PDF
High-performance liquid metal electromagnetic actuator fabricated by femtosecond laser 被引量:1
15
作者 Yiyu Chen Hao Wu +11 位作者 Rui Li Shaojun Jiang Shuneng Zhou Zehang Cui Yuan Tao Xinyuan Zheng Qianqian Zhang Jiawen Li Guoqiang Li Dong Wu Jiaru Chu Yanlei Hu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期511-521,共11页
Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conducto... Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics. 展开更多
关键词 soft actuators femtosecond laser liquid metal
下载PDF
Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults 被引量:1
16
作者 Li-Ying Hao Gege Dong +1 位作者 Tieshan Li Zhouhua Peng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期956-964,共9页
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in... This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method. 展开更多
关键词 Actuator faults autonomous surface vehicle(ASVs) improved artificial potential function nonlinear state observer obstacle avoidance
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems 被引量:1
17
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults 被引量:1
18
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction
19
作者 He Liu Haoxiang Chu +10 位作者 Hailiang Yuan Deliang Li Weisi Deng Zhiwei Fu Ruonan Liu Yiying Liu Yixuan Han Yanpeng Wang Yue Zhao Xiaoyu Cui Ye Tian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期139-152,共14页
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens... The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions. 展开更多
关键词 SELF-SENSING Gradient structure Bioinspired actuator Hydrogel sensor Remote interaction
下载PDF
Delivering Microrobots in the Musculoskeletal System
20
作者 Mumin Cao Renwang Sheng +10 位作者 Yimin Sun Ying Cao Hao Wang Ming Zhang Yunmeng Pu Yucheng Gao Yuanwei Zhang Panpan Lu Gaojun Teng Qianqian Wang Yunfeng Rui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期585-617,共33页
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo e... Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo end-stage surgery.Therefore,future treatments should focus on early detection and intervention of regional lesions.Microrobots have been gradually used in organisms due to their advantages of intelligent,precise and minimally invasive targeted delivery.Through the combination of control and imaging systems,microrobots with good biosafety can be delivered to the desired area for treatment.In the musculoskeletal system,microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body.Compared to traditional biomaterial and tissue engineering strategies,active motion improves the efficiency and penetration of local targeting of cells/drugs.This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system.We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system. 展开更多
关键词 MICROROBOT Musculoskeletal system Targeted delivery Microrobotic systems Magnetic actuation
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部