In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo...In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.展开更多
Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper propos...Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper proposes a Grey Relational Analysis-Adaptive Boosting-Support Vector Regression(GRA-AdaBoost-SVR)model,which can ensure the prediction accuracy of the model under small sample,improve the generalization ability,and enhance the prediction accuracy.SVR allows mapping to high-dimensional spaces using kernel functions,good for solving nonlinear problems.Grain yield datasets generally have small sample sizes and many features,making SVR a promising application for grain yield datasets.However,the SVR algorithm’s own problems with the selection of parameters and kernel functions make the model less generalizable.Therefore,the Adaptive Boosting(AdaBoost)algorithm can be used.Using the SVR algorithm as a training method for base learners in the AdaBoost algorithm.Effectively address the generalization capability problem in SVR algorithms.In addition,to address the problem of sensitivity to anomalous samples in the AdaBoost algorithm,the GRA method is used to extract influence factors with higher correlation and reduce the number of anomalous samples.Finally,applying the GRA-AdaBoost-SVR model to grain yield forecasting in China.Experiments were conducted to verify the correctness of the model and to compare the effectiveness of several traditional models applied to the grain yield data.The results show that the GRA-AdaBoost-SVR algorithm improves the prediction accuracy,the model is smoother,and confirms that the model possesses better prediction performance and better generalization ability.展开更多
Arc sensing plays a significant role in the control and monitoring of welding quality for aluminum alloy pulsed gas touch argon welding(GTAW). A method for online quality monitoring based on adaptive boosting algorith...Arc sensing plays a significant role in the control and monitoring of welding quality for aluminum alloy pulsed gas touch argon welding(GTAW). A method for online quality monitoring based on adaptive boosting algorithm is proposed through the analysis of acquired arc voltage signal. Two feature extraction algorithms were developed in time domain and frequency domain respectively to extract six statistic characteristic parameters before removing the pulse interference using the wavelet packet transform(WPT), based on which the Adaboost classification model is successfully established to evaluate and classify the welding quality into two classes and the classified accuracy of the model is as high as 98.81%. The Adaboost algorithm has been verified to be feasible in the online evaluation of welding quality.展开更多
文摘In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.
基金This work was support in part by Research on Key Technologies of Intelligent Decision-Making for Food Big Data under Grant 2018A01038in part by the National Science Fund for Youth of Hubei Province of China under Grant 2018CFB408+2 种基金in part by the Natural Science Foundation of Hubei Province of China under Grant 2015CFA061in part by the National Nature Science Foundation of China under Grant 61272278in part by the Major Technical Innovation Projects of Hubei Province under Grant 2018ABA099。
文摘Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper proposes a Grey Relational Analysis-Adaptive Boosting-Support Vector Regression(GRA-AdaBoost-SVR)model,which can ensure the prediction accuracy of the model under small sample,improve the generalization ability,and enhance the prediction accuracy.SVR allows mapping to high-dimensional spaces using kernel functions,good for solving nonlinear problems.Grain yield datasets generally have small sample sizes and many features,making SVR a promising application for grain yield datasets.However,the SVR algorithm’s own problems with the selection of parameters and kernel functions make the model less generalizable.Therefore,the Adaptive Boosting(AdaBoost)algorithm can be used.Using the SVR algorithm as a training method for base learners in the AdaBoost algorithm.Effectively address the generalization capability problem in SVR algorithms.In addition,to address the problem of sensitivity to anomalous samples in the AdaBoost algorithm,the GRA method is used to extract influence factors with higher correlation and reduce the number of anomalous samples.Finally,applying the GRA-AdaBoost-SVR model to grain yield forecasting in China.Experiments were conducted to verify the correctness of the model and to compare the effectiveness of several traditional models applied to the grain yield data.The results show that the GRA-AdaBoost-SVR algorithm improves the prediction accuracy,the model is smoother,and confirms that the model possesses better prediction performance and better generalization ability.
基金the National Natural Science Foundation of China(No.51275301)
文摘Arc sensing plays a significant role in the control and monitoring of welding quality for aluminum alloy pulsed gas touch argon welding(GTAW). A method for online quality monitoring based on adaptive boosting algorithm is proposed through the analysis of acquired arc voltage signal. Two feature extraction algorithms were developed in time domain and frequency domain respectively to extract six statistic characteristic parameters before removing the pulse interference using the wavelet packet transform(WPT), based on which the Adaboost classification model is successfully established to evaluate and classify the welding quality into two classes and the classified accuracy of the model is as high as 98.81%. The Adaboost algorithm has been verified to be feasible in the online evaluation of welding quality.