The purpose of this paper was to develop a reliable body shape analysis approach based on cluster analysis, k. nearestneighbor( KNN), and multi-class support vector machine( MSVM). Firstly,a total of 357 Chinese men w...The purpose of this paper was to develop a reliable body shape analysis approach based on cluster analysis, k. nearestneighbor( KNN), and multi-class support vector machine( MSVM). Firstly,a total of 357 Chinese men were selected to make a dataset. Secondly, the experiences of these data were not accumulated to build general models. Five body angles were extracted as independent variables. Four clusters were the most efficient cluster number for our study. Finally,the accuracy of body classifications is compared between KNN and MSVM. In this study,the body classification framework was studied to transfer the body feature data to intuitive types. Moreover,the adaptive made-tomeasure( MTM) framework based on body classification was studied. The case demonstration and analysis show the effectiveness of the study.展开更多
The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute th...The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.展开更多
The explanation and simulation of the natural and artificial intelligence are the central goals of the studies of Neuroscience, Psychology, Artificial Intelligence and Cognitive Science. This paper first gives an intr...The explanation and simulation of the natural and artificial intelligence are the central goals of the studies of Neuroscience, Psychology, Artificial Intelligence and Cognitive Science. This paper first gives an introduction to the core topics and approaches in the study. Then, GAF--a general adaptive framework for neural system is proposed. Interdisciplinary discussions around the adaptation of the human nervous system are presented. Rules describing the theory of adaptation of the nervous system are provided.展开更多
基金Talent Project of Xiamen University of Technology,China(No.90030617)
文摘The purpose of this paper was to develop a reliable body shape analysis approach based on cluster analysis, k. nearestneighbor( KNN), and multi-class support vector machine( MSVM). Firstly,a total of 357 Chinese men were selected to make a dataset. Secondly, the experiences of these data were not accumulated to build general models. Five body angles were extracted as independent variables. Four clusters were the most efficient cluster number for our study. Finally,the accuracy of body classifications is compared between KNN and MSVM. In this study,the body classification framework was studied to transfer the body feature data to intuitive types. Moreover,the adaptive made-tomeasure( MTM) framework based on body classification was studied. The case demonstration and analysis show the effectiveness of the study.
基金supported by the National Natural Science Foundation of China(61101173)
文摘The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.
基金This work is partly supported by China 863 Project Foundation
文摘The explanation and simulation of the natural and artificial intelligence are the central goals of the studies of Neuroscience, Psychology, Artificial Intelligence and Cognitive Science. This paper first gives an introduction to the core topics and approaches in the study. Then, GAF--a general adaptive framework for neural system is proposed. Interdisciplinary discussions around the adaptation of the human nervous system are presented. Rules describing the theory of adaptation of the nervous system are provided.