期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method 被引量:8
1
作者 Xin-Peng Pan Guang-Zhi Zhang +1 位作者 Jia-Jia Zhang Xing-Yao Yin 《Petroleum Science》 SCIE CAS CSCD 2017年第1期75-83,共9页
The conventional Markov chain Monte Carlo (MCMC) method is limited to the selected shape and size of proposal distribution and is not easy to start when the initial proposal distribution is far away from the target ... The conventional Markov chain Monte Carlo (MCMC) method is limited to the selected shape and size of proposal distribution and is not easy to start when the initial proposal distribution is far away from the target distribution. To overcome these drawbacks of the conventional MCMC method, two useful improvements in MCMC method, adaptive Metropolis (AM) algorithm and delayed rejection (DR) algorithm, are attempted to be combined. The AM algorithm aims at adapting the proposal distribution by using the generated estimators, and the DR algorithm aims at enhancing the efficiency of the improved MCMC method. Based on the improved MCMC method, a Bayesian amplitude versus offset (AVO) inversion method on the basis of the exact Zoeppritz equation has been developed, with which the P- and S-wave velocities and the density can be obtained directly, and the uncertainty of AVO inversion results has been estimated as well. The study based on the logging data and the seismic data demonstrates the feasibility and robustness of the method and shows that all three parameters are well retrieved. So the exact Zoeppritz-based nonlinear inversion method by using the improved MCMC is not only suitable for reservoirs with strong-contrast interfaces and longoffset ranges but also it is more stable, accurate and antinoise. 展开更多
关键词 adaptive metropolis (AM) algorithm Delayed rejection (DR) algorithm Bayesian AVOinversion Exact Zoeppritz Nonlinear inversion
下载PDF
Nash Model Parameter Uncertainty Analysis by AM-MCMC Based on BFS and Probabilistic Flood Forecasting 被引量:4
2
作者 XING Zhenxiang RUI Xiaofang +2 位作者 FU Qiang JIYi ZHU Shijiang 《Chinese Geographical Science》 SCIE CSCD 2011年第1期74-83,共10页
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu... A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision. 展开更多
关键词 Bayesian Forecasting System parameter uncertainty Markov Chain Monte Carlo simulation adaptive metropolis method probabilistic flood forecasting
下载PDF
A NEW LIKELIHOOD-BASED MODULATION CLASSIFICATION ALGORITHM USING MCMC
3
作者 JinXiaoyan ZhouXiyuan 《Journal of Electronics(China)》 2012年第1期17-22,共6页
In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,c... In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset. 展开更多
关键词 Modulation classification Markov Chain Monte Carlo (MCMC) adaptive metropolis(AM) Maximum Likelihood (ML) test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部