In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteris...In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.展开更多
An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is base...An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.展开更多
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
Adaptive modulation and coding( AMC) which depends on channel state information( CSI) can make the modulation and coding scheme( MCS) for the sender changed, and make the spectrum efficiency enhanced. The traditional ...Adaptive modulation and coding( AMC) which depends on channel state information( CSI) can make the modulation and coding scheme( MCS) for the sender changed, and make the spectrum efficiency enhanced. The traditional method of AMC establishes a lookup table of MCSs at first,and then the sender chooses the proper MCS according to the CSI from feedback channel. However,this method is not suitable for frequency selective and fast fading channel. Thus, a method based on fuzzy logic cognitive engine is proposed in this paper. The type of channel is recognized by the fuzzy logic cognitive engine,then the MCSs are modified to suit for the channel type. The simulation results show that the proposed method is more suitable for frequency selective and fast fading channel. And it is more reliability under the condition of meeting the bit error rate( BER).展开更多
Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kind...Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.展开更多
This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-p...This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-power MQAM for all fading regions, so it has an acceptable complexity to implement. The optimal adaptive TuCM scheme is determined subject to various system constraints. Simulations have been performed to measure the performance of the scheme for different parameters. It is shown that adopting both the turbo coded modulator and the transmit power achieves a performance within 2.5 dB of the fading channel capacity.展开更多
Broadcasting live digital TV to a small battery-powered handheld device is very challenging. One of the most promising technologies to provide such services is DVB-H (Digital Video Broadcasting over Handheld). Power c...Broadcasting live digital TV to a small battery-powered handheld device is very challenging. One of the most promising technologies to provide such services is DVB-H (Digital Video Broadcasting over Handheld). Power consumption has always been one of the most crucial challenges for handheld devices. In this paper, a novel Adaptive Modulation and Coding (AMC) framework is proposed for DVB-H systems to address the challenging problem of power consumption. The proposed power saving AMC framework operates by rearranging the transmitted frames in a pre-defined pattern. The adaptive receiver selects the appropriate modulation technique and/or code rate, one that achieves a target Bit Error Rate (BER), and then could be switched off and/or powered down resulting in significant potential for saving of reception and processing powers. Simulation of the DVB-H system under the proposed framework proved that the proposed power saving AMC framework is capable of achieving power saving up to 71.875% in COST207 Typical Urban 6-paths (TU6) channel. Furthermore, numerical analysis for the power saving potential and BER performance of the proposed framework is performed for both flat Rayleigh channel and multipath TU6 channel.展开更多
UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make f...UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.展开更多
Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more ex...Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.展开更多
This paper proposes a cross-layer dual adaptive coded modulation architecture using turbo codes for mobile multimedia communication, which adapts to both the varying channel characteristics and the QoS of various mult...This paper proposes a cross-layer dual adaptive coded modulation architecture using turbo codes for mobile multimedia communication, which adapts to both the varying channel characteristics and the QoS of various multimedia services simultancously to increase the average system throughput substantially. A pragmatic channeladaptive turbo coded modulation schcme, which comes within 2.5 dB of the Shannon limit, is optimally designed, and then a QoS-adaptive scheme is superimposed to build the dual adaptive architecture. Simulation results show that the novel dual adaption reduces the gap from the fading channel capacity to 2 dB when assuming different services occur in equal probability and the service duration follows exponential distribution.展开更多
This paper proposed a cross-layer dual adaptive coded modulation architecture using turbo codes for mobile muhimedia communication, which simultaneously adapted to both the varying channel characteristics and the qual...This paper proposed a cross-layer dual adaptive coded modulation architecture using turbo codes for mobile muhimedia communication, which simultaneously adapted to both the varying channel characteristics and the quality of service (QoS) of various mobile multimedia services to increase the average system throughput substantially. A pragmatic channel-adaptive turbo coded modulation scheme, which comes within 2.5dB of the Shannon limit, was optimally designed, and then a QoS-adaptive scheme was superimposed to build the dual adaptive architecture. Simulation results show that the novel dual adaption reduces the difference with the fading channel capacity to 2dB when assuming different services occur in equal probability and the service duration follows the exponential distribution.展开更多
The traditional communication system is effectively designed for the worst-case channel state and it can not use the spectral efficiently over the time-varying multipath channel. In order to improve the spectral effic...The traditional communication system is effectively designed for the worst-case channel state and it can not use the spectral efficiently over the time-varying multipath channel. In order to improve the spectral efficiency and ensure robust and spectrally-efficient transmission over the time-varying multipath channel,a joint rate control and adaptive modulation and coding ( AMC) algorithm for adaptive transmission systems is proposed in this paper. Firstly,the proposed algorithm can formulate a modulation and coding scheme ( MCS) switching table according to the offline simulation results and the target bit error rate ( BER) . Then,the optimal MCS is selected in MCS switching table according to the channel state information ( CSI) and then passes to the transmitter and receiver to implement. So the adaptive system which always uses the optimal MCS to transmit signals uses the spectral efficiently. The simulation results validate the proposed algorithm and show that under the premise of meeting the target BER,the adaptive system performing the proposed algorithm has a higher average spectral efficiency ( ASE) than that of the non-adaptive system.展开更多
With the advent of the wide-spread use of smart phones, video streaming over mobile wireless networks has suddenly taken a huge surge in recent years. Considering its enormous potential, mobile WiMAX is emerging as a ...With the advent of the wide-spread use of smart phones, video streaming over mobile wireless networks has suddenly taken a huge surge in recent years. Considering its enormous potential, mobile WiMAX is emerging as a viable technology for mobile TV which is expected to become of key importance in the future of mobile industry. In this paper, a simulation performance study of Mobile TV over mobile WiMAX is conducted with different types of adaptive modulation and coding taking into account key system and environment parameters which include the variation in the speed of the mobile, path-loss, scheduling service classes with the fixed type of modulations. Our simulation has been conducted using OPNET simulation. Simulation results show that dynamic adaptation of modulation and coding schemes based on channel conditions can offer considerably more enhanced QoS and at the same time reduce the overall bandwidth of the system.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
A practical adaptive turbo coded modulation (TuCM) scheme was proposed and its adaptive method was described. With some hardware considerations, a suboptimal optimization algorithm that the number of fading regions is...A practical adaptive turbo coded modulation (TuCM) scheme was proposed and its adaptive method was described. With some hardware considerations, a suboptimal optimization algorithm that the number of fading regions is variable was put forward. Furthermore, the cutoff fade depth of power adaptation was modified to reduce the interruption probability. The results show that the proposed adaptive TuCM comes within 3 dB of Rayleigh fading channel capacity, and exhibits about 3 dB power gain relative to the conventional adaptive trellis-coded modulation (TCM), and is easy to realize by hardware.展开更多
This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous work...This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.展开更多
In wireless relaying networks, the traditional incremental cooperative relaying scheme (IR) could improve the system throughput enormously over fading channels by exploiting relay nodes to retransmit the source data p...In wireless relaying networks, the traditional incremental cooperative relaying scheme (IR) could improve the system throughput enormously over fading channels by exploiting relay nodes to retransmit the source data packet to the destination. In order to enhance the system throughput over time-varying fading channels, this paper proposes an adaptive incremental cooperative re-laying scheme (AIR) based on adaptive modulation and coding, which implements adaptive rate transmission for the source and relay nodes according to channel state information. We derive expressions for the AIR system throughput, and then give a gradient-based search algorithm to find the optimized adaptive solution for the AIR system by maximizing throughput subject to the constraint of packet error rate at the data link layer. The results indicate that throughput of AIR system outperforms that of traditional IR system greatly for any SNR value.展开更多
Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by th...Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by the use of different Modulation and Coding Schemes (MCS). This paper presents an adaptive AMC algorithm and introduces a theoretical analysis model in order to to investigate its throughput and Frame Error Rate (FER). Subject to the given FER target, our numerical and link level simulation results both show that our algorithm outperforms other existing adaptive algorithms.展开更多
基金National Outstanding Youth Founda-tion (No.60525303)National Natural Science Foundation of China(No.60404022,60704009)Natural Science Foundation of Hebei Province (No.F2005000390,F2006000270).
文摘In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.
基金the National Natural Science Foundation of China (60496313)
文摘An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
基金Supported by National Natural Science Foundation of China 60404022, 60704009), National Outstanding Youth Foundation 60525303), and Natural Science Foundation of Hebei Province F2005000390, F2006000270)
基金National Natural Science Foundations of China(Nos.61071104,61201143)Innovation Foundation of China Academy of Space Technology(CAST)(ITS)(No.F-W-YY-2013-016)
文摘Adaptive modulation and coding( AMC) which depends on channel state information( CSI) can make the modulation and coding scheme( MCS) for the sender changed, and make the spectrum efficiency enhanced. The traditional method of AMC establishes a lookup table of MCSs at first,and then the sender chooses the proper MCS according to the CSI from feedback channel. However,this method is not suitable for frequency selective and fast fading channel. Thus, a method based on fuzzy logic cognitive engine is proposed in this paper. The type of channel is recognized by the fuzzy logic cognitive engine,then the MCSs are modified to suit for the channel type. The simulation results show that the proposed method is more suitable for frequency selective and fast fading channel. And it is more reliability under the condition of meeting the bit error rate( BER).
文摘Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.
基金This project was supported by the National High Technology Research and Development Program of China (2001AA121031) the National Natural Science Foundation of China (60072028).
文摘This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-power MQAM for all fading regions, so it has an acceptable complexity to implement. The optimal adaptive TuCM scheme is determined subject to various system constraints. Simulations have been performed to measure the performance of the scheme for different parameters. It is shown that adopting both the turbo coded modulator and the transmit power achieves a performance within 2.5 dB of the fading channel capacity.
文摘Broadcasting live digital TV to a small battery-powered handheld device is very challenging. One of the most promising technologies to provide such services is DVB-H (Digital Video Broadcasting over Handheld). Power consumption has always been one of the most crucial challenges for handheld devices. In this paper, a novel Adaptive Modulation and Coding (AMC) framework is proposed for DVB-H systems to address the challenging problem of power consumption. The proposed power saving AMC framework operates by rearranging the transmitted frames in a pre-defined pattern. The adaptive receiver selects the appropriate modulation technique and/or code rate, one that achieves a target Bit Error Rate (BER), and then could be switched off and/or powered down resulting in significant potential for saving of reception and processing powers. Simulation of the DVB-H system under the proposed framework proved that the proposed power saving AMC framework is capable of achieving power saving up to 71.875% in COST207 Typical Urban 6-paths (TU6) channel. Furthermore, numerical analysis for the power saving potential and BER performance of the proposed framework is performed for both flat Rayleigh channel and multipath TU6 channel.
文摘UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.
基金supported by the National High Technology Research and Development Program of China (No. 2020YFB1806004)。
文摘Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.
基金This work is supported by the High Technology Research and Development Program of China(No. 2001AA121031)the National Natural Science Foundation of China (No. 60072028)
文摘This paper proposes a cross-layer dual adaptive coded modulation architecture using turbo codes for mobile multimedia communication, which adapts to both the varying channel characteristics and the QoS of various multimedia services simultancously to increase the average system throughput substantially. A pragmatic channeladaptive turbo coded modulation schcme, which comes within 2.5 dB of the Shannon limit, is optimally designed, and then a QoS-adaptive scheme is superimposed to build the dual adaptive architecture. Simulation results show that the novel dual adaption reduces the gap from the fading channel capacity to 2 dB when assuming different services occur in equal probability and the service duration follows exponential distribution.
基金Supported by the National High Technology Research and Development Programme of China (No. 2001AA121031 )the National Natural Science Foundation of China (No. 60072028)
文摘This paper proposed a cross-layer dual adaptive coded modulation architecture using turbo codes for mobile muhimedia communication, which simultaneously adapted to both the varying channel characteristics and the quality of service (QoS) of various mobile multimedia services to increase the average system throughput substantially. A pragmatic channel-adaptive turbo coded modulation scheme, which comes within 2.5dB of the Shannon limit, was optimally designed, and then a QoS-adaptive scheme was superimposed to build the dual adaptive architecture. Simulation results show that the novel dual adaption reduces the difference with the fading channel capacity to 2dB when assuming different services occur in equal probability and the service duration follows the exponential distribution.
基金Sponsored by the National Natural Science Foundation and Civil Aviation Administration of China(Grant No.61101122 and 61071104)the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(Grant No.ITD-U12004/K1260010)
文摘The traditional communication system is effectively designed for the worst-case channel state and it can not use the spectral efficiently over the time-varying multipath channel. In order to improve the spectral efficiency and ensure robust and spectrally-efficient transmission over the time-varying multipath channel,a joint rate control and adaptive modulation and coding ( AMC) algorithm for adaptive transmission systems is proposed in this paper. Firstly,the proposed algorithm can formulate a modulation and coding scheme ( MCS) switching table according to the offline simulation results and the target bit error rate ( BER) . Then,the optimal MCS is selected in MCS switching table according to the channel state information ( CSI) and then passes to the transmitter and receiver to implement. So the adaptive system which always uses the optimal MCS to transmit signals uses the spectral efficiently. The simulation results validate the proposed algorithm and show that under the premise of meeting the target BER,the adaptive system performing the proposed algorithm has a higher average spectral efficiency ( ASE) than that of the non-adaptive system.
文摘With the advent of the wide-spread use of smart phones, video streaming over mobile wireless networks has suddenly taken a huge surge in recent years. Considering its enormous potential, mobile WiMAX is emerging as a viable technology for mobile TV which is expected to become of key importance in the future of mobile industry. In this paper, a simulation performance study of Mobile TV over mobile WiMAX is conducted with different types of adaptive modulation and coding taking into account key system and environment parameters which include the variation in the speed of the mobile, path-loss, scheduling service classes with the fixed type of modulations. Our simulation has been conducted using OPNET simulation. Simulation results show that dynamic adaptation of modulation and coding schemes based on channel conditions can offer considerably more enhanced QoS and at the same time reduce the overall bandwidth of the system.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
基金National Natural Science Foundation ofChina (60 0 72 0 2 8) High Technology Research and Developm entProgram (863 ) of China (2 0 0 1AA12 10 3 1)
文摘A practical adaptive turbo coded modulation (TuCM) scheme was proposed and its adaptive method was described. With some hardware considerations, a suboptimal optimization algorithm that the number of fading regions is variable was put forward. Furthermore, the cutoff fade depth of power adaptation was modified to reduce the interruption probability. The results show that the proposed adaptive TuCM comes within 3 dB of Rayleigh fading channel capacity, and exhibits about 3 dB power gain relative to the conventional adaptive trellis-coded modulation (TCM), and is easy to realize by hardware.
文摘This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.
文摘In wireless relaying networks, the traditional incremental cooperative relaying scheme (IR) could improve the system throughput enormously over fading channels by exploiting relay nodes to retransmit the source data packet to the destination. In order to enhance the system throughput over time-varying fading channels, this paper proposes an adaptive incremental cooperative re-laying scheme (AIR) based on adaptive modulation and coding, which implements adaptive rate transmission for the source and relay nodes according to channel state information. We derive expressions for the AIR system throughput, and then give a gradient-based search algorithm to find the optimized adaptive solution for the AIR system by maximizing throughput subject to the constraint of packet error rate at the data link layer. The results indicate that throughput of AIR system outperforms that of traditional IR system greatly for any SNR value.
文摘Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by the use of different Modulation and Coding Schemes (MCS). This paper presents an adaptive AMC algorithm and introduces a theoretical analysis model in order to to investigate its throughput and Frame Error Rate (FER). Subject to the given FER target, our numerical and link level simulation results both show that our algorithm outperforms other existing adaptive algorithms.