This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t...This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.展开更多
Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one...Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one of the methods that can expand the lifespan of the whole network by grouping the sensor nodes according to some criteria and choosing the appropriate cluster heads(CHs). The balanced load of the CHs has an important effect on the energy consumption balancing and lifespan of the whole network. Therefore, a new CHs election method is proposed using an adaptive discrete particle swarm optimization (ADPSO) algorithm with a fitness value function considering the load balancing and energy consumption. Simulation results not only demonstrate that the proposed algorithm can have better performance in load balancing than low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), and dynamic clustering algorithm with balanced load (DCBL), but also imply that the proposed algorithm can extend the network lifetime more.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability...In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital t...The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital technology.The security and the privacy of users’ images are ensured through reversible datahiding techniques. The efficiency of the existing data hiding techniques did notprovide optimum performance with multiple end nodes. These issues are solvedby using Separable Data Hiding and Adaptive Particle Swarm Optimization(SDHAPSO) algorithm to attain optimal performance. Image encryption, dataembedding, data extraction/image recovery are the main phases of the proposedapproach. DFT is generally used to extract the transform coefficient matrix fromthe original image. DFT coefficients are in float format, which assists in transforming the image to integral format using the round function. After obtainingthe encrypted image by data-hider, additional data embedding is formulated intohigh-frequency coefficients. The proposed SDHAPSO is mainly utilized for performance improvement through optimal pixel location selection within the imagefor secret bits concealment. In addition, the secret data embedding capacityenhancement is focused on image visual quality maintenance. Hence, it isobserved from the simulation results that the proposed SDHAPSO techniqueoffers high-level security outcomes with respect to higher PSNR, security level,lesser MSE and higher correlation than existing techniques. Hence, enhancedsensitive information protection is attained, which improves the overall systemperformance.展开更多
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula...The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.展开更多
To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle ...To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle swarm optimization (PSO). The nmnber of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model.展开更多
Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation...Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly.展开更多
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se...To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.展开更多
Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local s...Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance.展开更多
In the standard particle swarm optimization(SPSO),the big problem is that it suffers from premature convergence,that is,in complex optimization problems,it may easily get trapped in local optima.In order to mitigate p...In the standard particle swarm optimization(SPSO),the big problem is that it suffers from premature convergence,that is,in complex optimization problems,it may easily get trapped in local optima.In order to mitigate premature convergence problem,this paper presents a new algorithm,which is called particle swarm optimization(PSO) with directed mutation,or DMPSO.The main idea of this algorithm is to "let the best particle(the smallest fitness of the particle swarm) become more excellent and the worst particle(the largest fitness of the particle swarm) try to be excellent".The new algorithm is tested on a set of eight benchmark functions,and compared with those of other four PSO variants.The experimental results illustrate the effectiveness and efficiency of the DMPSO.The comparisons show that DMPSO significantly improves the performance of PSO and searching accuracy.展开更多
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t...The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.展开更多
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its...An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.展开更多
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,...Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.展开更多
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati...In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.展开更多
A fuzzy adaptive particle swarm optimization (FAPSO) is presented to determine the optimal operation of hydrothermal power system. In order to solve the shortcoming premature and easily local optimum of the standard p...A fuzzy adaptive particle swarm optimization (FAPSO) is presented to determine the optimal operation of hydrothermal power system. In order to solve the shortcoming premature and easily local optimum of the standard particle swarm optimization (PSO), the fuzzy adaptive criterion is applied for inertia weight based on the evolution speed factor and square deviation of fitness for the swarm, in each iteration process, the inertia weight is dynamically changed using the fuzzy rules to adapt to nonlinear optimization process. The performance of FAPSO is demonstrated on hydrothermal system comprising 1 thermal unit and 4 hydro plants, the comparison is drawn in PSO, FAPSO and genetic algorithms (GA) in terms of the solution quality and computational efficiency. The experiment showed that the proposed approach has higher quality solutions and strong ability in global search.展开更多
Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that...Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that provide an intelligent way of suggesting solutions or decision-making.Swarm intelligence techniques including Particle Swarm Optimization(PSO)have proved to be effective examples.Different recent experiments showed that the PSO algorithm is reliable for timetabling in many applications such as educational and personnel timetabling,machine scheduling,etc.However,having an optimal solution is extremely challenging but having a sub-optimal solution using heuristics or metaheuristics is guaranteed.This research paper seeks the enhancement of the PSO algorithm for an efficient timetabling task.This algorithm aims at generating a feasible timetable within a reasonable time.This enhanced version is a hybrid dynamic adaptive PSO algorithm that is tested on a round-robin tournament known as ITC2021 which is dedicated to sports timetabling.The competition includes several soft and hard constraints to be satisfied in order to build a feasible or sub-optimal timetable.It consists of three categories of complexities,namely early,test,and middle instances.Results showed that the proposed dynamic adaptive PSO has obtained feasible timetables for almost all of the instances.The feasibility is measured by minimizing the violation of hard constraints to zero.The performance of the dynamic adaptive PSO is evaluated by the consumed computational time to produce a solution of feasible timetable,consistency,and robustness.The dynamic adaptive PSO showed a robust and consistent performance in producing a diversity of timetables in a reasonable computational time.展开更多
基金supported by the Chinese Ministry of Science and Intergovernmental Cooperation Project (2009DFA12870)the National Science Foundation of China (60974062,60972119)
文摘This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.
基金Supported by National-Natural Science Found for Distinguished Young Scholars of China (61025015), the Foundation for Innovative Research Groups of National Natural Science Foundation of China (61321003) and the China Scholarship Council
基金National Natural Science Foundations of China(No. 61103175,No. 11141005)Technology Innovation Platform Project of Fujian Province,China (No. 2009J1007)+1 种基金Key Project Development Foundation of Education Committee of Fujian Province,China (No.JA11011)Project Development Foundations of Fuzhou University,China (No. 2010-XQ-21,No. XRC-1037)
文摘Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one of the methods that can expand the lifespan of the whole network by grouping the sensor nodes according to some criteria and choosing the appropriate cluster heads(CHs). The balanced load of the CHs has an important effect on the energy consumption balancing and lifespan of the whole network. Therefore, a new CHs election method is proposed using an adaptive discrete particle swarm optimization (ADPSO) algorithm with a fitness value function considering the load balancing and energy consumption. Simulation results not only demonstrate that the proposed algorithm can have better performance in load balancing than low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), and dynamic clustering algorithm with balanced load (DCBL), but also imply that the proposed algorithm can extend the network lifetime more.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
基金supported by the National Natural Science Foundation of China ( Grant No. 61072133)the Production,Learning and Research Joint Innovation Program of Jiangsu Province, China ( Grant Nos. BY2013007-02, SBY201120033)+2 种基金the Major Project Plan for Natural science Research in Colleges and Universities of Jiangsu Province, China( Grant No. 15KJA460008)the Open Topic of Atmospheric Sounding Key Open Laboratory of China Meteorological Administration ( Grant No. KLAS201407)the advantage discipline platform " Information and Communication Engineering" of Jiangsu Province,China
文摘In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.
文摘The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital technology.The security and the privacy of users’ images are ensured through reversible datahiding techniques. The efficiency of the existing data hiding techniques did notprovide optimum performance with multiple end nodes. These issues are solvedby using Separable Data Hiding and Adaptive Particle Swarm Optimization(SDHAPSO) algorithm to attain optimal performance. Image encryption, dataembedding, data extraction/image recovery are the main phases of the proposedapproach. DFT is generally used to extract the transform coefficient matrix fromthe original image. DFT coefficients are in float format, which assists in transforming the image to integral format using the round function. After obtainingthe encrypted image by data-hider, additional data embedding is formulated intohigh-frequency coefficients. The proposed SDHAPSO is mainly utilized for performance improvement through optimal pixel location selection within the imagefor secret bits concealment. In addition, the secret data embedding capacityenhancement is focused on image visual quality maintenance. Hence, it isobserved from the simulation results that the proposed SDHAPSO techniqueoffers high-level security outcomes with respect to higher PSNR, security level,lesser MSE and higher correlation than existing techniques. Hence, enhancedsensitive information protection is attained, which improves the overall systemperformance.
文摘The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.
基金supported by the by the National Natural Science Foundation(No.60874069,60634020)the National High Technology Research and Development Programme of China(No.2009AA04Z124)Hunan Provincial Natural Science Foundation of China(No.09JJ3122)
文摘To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle swarm optimization (PSO). The nmnber of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model.
文摘Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly.
文摘To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.
文摘Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance.
基金National Natural Science Foundation of China(No.60905039)
文摘In the standard particle swarm optimization(SPSO),the big problem is that it suffers from premature convergence,that is,in complex optimization problems,it may easily get trapped in local optima.In order to mitigate premature convergence problem,this paper presents a new algorithm,which is called particle swarm optimization(PSO) with directed mutation,or DMPSO.The main idea of this algorithm is to "let the best particle(the smallest fitness of the particle swarm) become more excellent and the worst particle(the largest fitness of the particle swarm) try to be excellent".The new algorithm is tested on a set of eight benchmark functions,and compared with those of other four PSO variants.The experimental results illustrate the effectiveness and efficiency of the DMPSO.The comparisons show that DMPSO significantly improves the performance of PSO and searching accuracy.
基金supported in part by the National Natural Science Foundation of China(92167201,62273264,61933007)。
文摘The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.
基金supported by the National Natural Science Foundation of China (60873086)the Aeronautical Science Foundation of China(20085153013)the Fundamental Research Found of Northwestern Polytechnical Unirersity (JC200942)
文摘An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.
基金supported by the National Natural Science Foundation of China(Grants No.51179108 and 51679151)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501033)+1 种基金the National Key Research and Development Program(Grant No.2016YFC0401603)the Program Sponsored for Scientific Innovation Research of College Graduates in Jiangsu Province(Grant No.KYZZ15_0140)
文摘Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.
基金supported by the National Natural Science Foundation of China (Grant No. 50679011)
文摘In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.
文摘A fuzzy adaptive particle swarm optimization (FAPSO) is presented to determine the optimal operation of hydrothermal power system. In order to solve the shortcoming premature and easily local optimum of the standard particle swarm optimization (PSO), the fuzzy adaptive criterion is applied for inertia weight based on the evolution speed factor and square deviation of fitness for the swarm, in each iteration process, the inertia weight is dynamically changed using the fuzzy rules to adapt to nonlinear optimization process. The performance of FAPSO is demonstrated on hydrothermal system comprising 1 thermal unit and 4 hydro plants, the comparison is drawn in PSO, FAPSO and genetic algorithms (GA) in terms of the solution quality and computational efficiency. The experiment showed that the proposed approach has higher quality solutions and strong ability in global search.
基金supported by Deanship of Scientific Research at Imam Abdulrahman Bin Faisal University,under the Project Number 2019-383-ASCS.
文摘Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that provide an intelligent way of suggesting solutions or decision-making.Swarm intelligence techniques including Particle Swarm Optimization(PSO)have proved to be effective examples.Different recent experiments showed that the PSO algorithm is reliable for timetabling in many applications such as educational and personnel timetabling,machine scheduling,etc.However,having an optimal solution is extremely challenging but having a sub-optimal solution using heuristics or metaheuristics is guaranteed.This research paper seeks the enhancement of the PSO algorithm for an efficient timetabling task.This algorithm aims at generating a feasible timetable within a reasonable time.This enhanced version is a hybrid dynamic adaptive PSO algorithm that is tested on a round-robin tournament known as ITC2021 which is dedicated to sports timetabling.The competition includes several soft and hard constraints to be satisfied in order to build a feasible or sub-optimal timetable.It consists of three categories of complexities,namely early,test,and middle instances.Results showed that the proposed dynamic adaptive PSO has obtained feasible timetables for almost all of the instances.The feasibility is measured by minimizing the violation of hard constraints to zero.The performance of the dynamic adaptive PSO is evaluated by the consumed computational time to produce a solution of feasible timetable,consistency,and robustness.The dynamic adaptive PSO showed a robust and consistent performance in producing a diversity of timetables in a reasonable computational time.