Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of...A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of placing multiple deformable mirrors (DMs) at locations that are conjugate to corresponding. layers of atmospheric turbulence. In order to control properly each DM, a tomographic method for determining the phase distortion contributed by each atmospheric layer has been developed and used in dealing with the circumstance of two layers.展开更多
Adaptive optics techniques have been developed over the past half century and routinely used in large ground-based telescopes for more than 30 years.Although this technique has already been used in various application...Adaptive optics techniques have been developed over the past half century and routinely used in large ground-based telescopes for more than 30 years.Although this technique has already been used in various applications,the basic setup and methods have not changed over the past 40 years.In recent years,with the rapid development of artificial in-telligence,adaptive optics will be boosted dramatically.In this paper,the recent advances on almost all aspects of adapt-ive optics based on machine learning are summarized.The state-of-the-art performance of intelligent adaptive optics are reviewed.The potential advantages and deficiencies of intelligent adaptive optics are also discussed.展开更多
The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegra...The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60%in H band under median seeing conditions of 1".Combined with our dedicated image rotation and subtraction(IRS)technique and the optimized IRS(O-IRS)algorithm,the averaged contrast ratio for a 5≤V_(mag)≤9 primary star is 1.3×10^(-5)and3.3×10^(-6)at angular distance of 0.36"with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet ofκAnd b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recoveredκAnd b planet,which gives a projected separation of 0.98"±0.05",a position angle of 51.1°±0.5°and a mass of 10.15_(-1.255)^(+2.19) MJup.These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes.展开更多
With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to im...With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.展开更多
We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix mea...We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large- amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.展开更多
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve t...An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.展开更多
Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it co...Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.展开更多
A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium l...A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.展开更多
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltage...Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.展开更多
Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophtha...Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.展开更多
The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable ...The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the ab- solute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corre- sponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06" and 45 nm, respectively. The results of on-sky testing obser- vations demonstrate better contrast and finer structures of the images taken with AO than those without AO.展开更多
Non-Common Path Error(NCPE) is one of the factors that limit an Adaptive Optics(AO)system from delivering ultra-high performance. To correct the NCPE associated static aberration, we propose a simple but robust and hi...Non-Common Path Error(NCPE) is one of the factors that limit an Adaptive Optics(AO)system from delivering ultra-high performance. To correct the NCPE associated static aberration, we propose a simple but robust and high-performance pupil-plane based wavefront measurement and correction technique, which can copy a single-mode fiber generated perfect wavefront to the AO system via an iteration optimization process, and the NCPE can be effectively corrected by directly commanding the Deformable Mirror(DM) of the AO system. Compared with the previous focal-plane based approach that uses focal plane based Point Spread Function(PSF) for correction evaluation, the pupil-plane based approach can be reliably and rapidly converged to a global optimization result and provides better performance, in particular for an AO system with a large initial static wavefront error. This technique we proposed can be implemented in astronomical AO systems where extremely high performance is required.展开更多
Multi-conjugate adaptive optics (MCAO) can considerably extend the cor- rected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun st...Multi-conjugate adaptive optics (MCAO) can considerably extend the cor- rected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun structure is utilized to provide multiple guide stars and a modal tomography approach is adopted to implement three- dimensional wavefront restorations. The principle of modal tomography is briefly re- viewed and a numerical simulation model is built with three equivalent turbulent lay- ers and a different number of guide stars. Our simulation results show that at least six guide stars are required for an accurate wavefront reconstruction in the case of three layers, and only three guide stars are needed in the two layer case. Finally, eigen- mode analysis results are given to reveal the singular modes that cannot be precisely retrieved in the tomography process.展开更多
Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at ...Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the to- mographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10" - 80" diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric prop- erties at ground level, and present the optimum DM conjugate altitudes for different observation sites.展开更多
Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconst...Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.展开更多
Despite the unique advantages of optical microscopy for molecular specific high resolution imaging of living structure in both space and time,curent applications are mostly limited to research settings.This is due to ...Despite the unique advantages of optical microscopy for molecular specific high resolution imaging of living structure in both space and time,curent applications are mostly limited to research settings.This is due to the aberrations and multiple scattering that is induced by the inhomogeneous refractive boundaries that are inherent to biological systems.However,recent developments in adaptive optics and wavefront shaping have shown that high resolution optical imaging is not fundamentally limited only to the observation of single cells,but can be significantly enhanced to realize deep tissue imaging.To provide insight into how these two closely related fields can expand the limits of bio imaging,we review the recent progresses in their performance and applicable range of studies as well as potential future research directions to push the limits of deep tissuse imnaging.展开更多
In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal...In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7mm). A Shack-Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 A, where A is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the diffraction limit resolution. The carbon granule on the white paper which has a size of 4.7μm is seen clearly. The size of the retina cell is between 4 and 10 μm. So this system has an ability to image the human eye's retina.展开更多
We constrain the host-star flux of the microlensing planet OGLE-2014-BLG-0676 Lb using adaptive optics(AO)images taken by the Magellan and Keck telescopes.We measure the flux of the light blended with the microlensed ...We constrain the host-star flux of the microlensing planet OGLE-2014-BLG-0676 Lb using adaptive optics(AO)images taken by the Magellan and Keck telescopes.We measure the flux of the light blended with the microlensed source to be K=16.79±0.04 mag and J=17.76±0.03 mag.Assuming that the blend is the lens star,we find that the host is a 0.73_(-0.29)^(+0.14)M_(⊙)star at a distance of2.67_(-1.41)^(+0.77)kpc,where the relatively large uncertainty in angular Einstein radius measurement is the major source of uncertainty.With mass of M_(p)=3.68_(-1.44)^(+0.69)M_J,the planet is likely a"super Jupiter"at a projected separation of r_(⊥)=4.53_(-2.50)^(+1.49)AU,and a degenerate model yields a similar M_p=3.73_(-1.47)^(+0.73)M_(J)at a closer separation of r_(⊥)=2.56_(-1.41)^(+0.84)AU.Our estimates are consistent with the previous Bayesian analysis based on a Galactic model.OGLE-2014-BLG-0676 Lb belongs to a sample of planets discovered in a"secondgeneration"planetary microlensing survey and we attempt to systematically constrain host properties of this sample with high-resolution imaging to study the distribution of planets.展开更多
It is necessary to know the distribution of the Chinese eye's aberrations in clinical environment to guide high-resolution retinal imaging system design for large Chinese population application.We collected the mo...It is necessary to know the distribution of the Chinese eye's aberrations in clinical environment to guide high-resolution retinal imaging system design for large Chinese population application.We collected the monochromatic wave aberration of 332 healthy eyes and 344 diseased eyes in Chinese population across a 6.0-mm pupil.The aberration statistics of Chinese eyes including healthy eyes and diseased eyes were analyzed,and some differences of aberrations between the Chinese and European race were concluded.On this basis,the requirement for adaptive optics(AO)correction of the Chinese eye's monochromatic aberrations was analyzed.The result showed that a stroke of 20μm and ability to correct aberrations up to the 8th Zernike order were needed for reflective wavefront correctors to achieve near difraction-limited imaging in both groups for a reference wavelength of 550 nm and a pupil diameter of 6.0mm.To verify the:analysis mentioned above,an A0 floodillumination system was established,and high-resolution retinal imaging in vivo was achieved for Chinese eye including both healthy and diseased eyes.展开更多
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.
文摘A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of placing multiple deformable mirrors (DMs) at locations that are conjugate to corresponding. layers of atmospheric turbulence. In order to control properly each DM, a tomographic method for determining the phase distortion contributed by each atmospheric layer has been developed and used in dealing with the circumstance of two layers.
基金funded by the National Natural Science Foundation of China(12173041,11733005,11727805)Youth Innovation Promotion Association,Chinese Academy of Sciences (No.2020376)+2 种基金Frontier Research Fund of Institute of Optics and Electronics,Chinese Academy of Sciences (No.C21K002)Research Equipment Development Project of the Chinese Academy of Sciences (No.YA18K019)Laboratory Innovation Foundation of the Chinese Academy of Sciences (No.YJ20K002)
文摘Adaptive optics techniques have been developed over the past half century and routinely used in large ground-based telescopes for more than 30 years.Although this technique has already been used in various applications,the basic setup and methods have not changed over the past 40 years.In recent years,with the rapid development of artificial in-telligence,adaptive optics will be boosted dramatically.In this paper,the recent advances on almost all aspects of adapt-ive optics based on machine learning are summarized.The state-of-the-art performance of intelligent adaptive optics are reviewed.The potential advantages and deficiencies of intelligent adaptive optics are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11827804,U2031210)。
文摘The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60%in H band under median seeing conditions of 1".Combined with our dedicated image rotation and subtraction(IRS)technique and the optimized IRS(O-IRS)algorithm,the averaged contrast ratio for a 5≤V_(mag)≤9 primary star is 1.3×10^(-5)and3.3×10^(-6)at angular distance of 0.36"with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet ofκAnd b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recoveredκAnd b planet,which gives a projected separation of 0.98"±0.05",a position angle of 51.1°±0.5°and a mass of 10.15_(-1.255)^(+2.19) MJup.These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes.
基金supported by the National Natural Science Foundation of China(Grant Nos.60736042,1174274,and 1174279)the Plan for Scientific and Technology Development of Suzhou,China(Grant No.ZXS201001)
文摘With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.
基金Project supported by the Key Scientific Equipment Development Project of China(Grant No.ZDYZ2013-2)the National High-Tech R&D Program of China(Grant Nos.G128201-G158201 and G128603-G158603)+2 种基金the Innovation Fund of Chinese Academy of Science(Grant No.CXJJ-16M208)the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe Outstanding Young Scientists,Chinese Academy of Sciences
文摘We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large- amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 10873024 and 11003031)supported by the National Science Foundation under Grant ATM-0841440
文摘An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.
基金Supported by National Key Scientific Instrument and Equipment Development Project of China (No.2012YQ12008005)
文摘Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.
基金supported by the Creative Foundation of the Chinese Academy of Sciences,China
文摘A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.
基金supported by the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)the National Natural Science Foundation of China(Grant No.11173008)the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program,China(Grant No.2012JQ0012)
文摘Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.
基金the Natural Science Foundation of Jiangsu Province(BK20200214)National Key R&D Program of China(2017YFB0403701)+5 种基金Jiangsu Province Key R&D Program(BE2019682 and BE2018667)National Natural Science Foundation of China(61605210,61675226,and 62075235)Youth Innovation Promotion Association of Chinese Academy of Sciences(2019320)Frontier Science Research Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC03)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02060000)and Entrepreneurship and Innova-tion Talents in Jiangsu Province(Innovation of Scienti¯c Research Institutes).
文摘Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.
基金funded by the National Natural Science Foundation of China(Grant No.11178004)
文摘The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the ab- solute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corre- sponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06" and 45 nm, respectively. The results of on-sky testing obser- vations demonstrate better contrast and finer structures of the images taken with AO than those without AO.
文摘Non-Common Path Error(NCPE) is one of the factors that limit an Adaptive Optics(AO)system from delivering ultra-high performance. To correct the NCPE associated static aberration, we propose a simple but robust and high-performance pupil-plane based wavefront measurement and correction technique, which can copy a single-mode fiber generated perfect wavefront to the AO system via an iteration optimization process, and the NCPE can be effectively corrected by directly commanding the Deformable Mirror(DM) of the AO system. Compared with the previous focal-plane based approach that uses focal plane based Point Spread Function(PSF) for correction evaluation, the pupil-plane based approach can be reliably and rapidly converged to a global optimization result and provides better performance, in particular for an AO system with a large initial static wavefront error. This technique we proposed can be implemented in astronomical AO systems where extremely high performance is required.
文摘Multi-conjugate adaptive optics (MCAO) can considerably extend the cor- rected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun structure is utilized to provide multiple guide stars and a modal tomography approach is adopted to implement three- dimensional wavefront restorations. The principle of modal tomography is briefly re- viewed and a numerical simulation model is built with three equivalent turbulent lay- ers and a different number of guide stars. Our simulation results show that at least six guide stars are required for an accurate wavefront reconstruction in the case of three layers, and only three guide stars are needed in the two layer case. Finally, eigen- mode analysis results are given to reveal the singular modes that cannot be precisely retrieved in the tomography process.
基金The China Scholarship Council Foundation is acknowledged for funding this research
文摘Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the to- mographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10" - 80" diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric prop- erties at ground level, and present the optimum DM conjugate altitudes for different observation sites.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.
基金supported by the National Research Foundation of Korea(Nos.2016R1C1B201530 and 2017M3C7A1044966)the Agency for Defense Development(UD170075FD)the TJ Park Foundation.
文摘Despite the unique advantages of optical microscopy for molecular specific high resolution imaging of living structure in both space and time,curent applications are mostly limited to research settings.This is due to the aberrations and multiple scattering that is induced by the inhomogeneous refractive boundaries that are inherent to biological systems.However,recent developments in adaptive optics and wavefront shaping have shown that high resolution optical imaging is not fundamentally limited only to the observation of single cells,but can be significantly enhanced to realize deep tissue imaging.To provide insight into how these two closely related fields can expand the limits of bio imaging,we review the recent progresses in their performance and applicable range of studies as well as potential future research directions to push the limits of deep tissuse imnaging.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60578035, 50473040 and 60736042)the Science Foundation of Jilin Province, China (Grant Nos 20050520 and 20050321-2)
文摘In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7mm). A Shack-Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 A, where A is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the diffraction limit resolution. The carbon granule on the white paper which has a size of 4.7μm is seen clearly. The size of the retina cell is between 4 and 10 μm. So this system has an ability to image the human eye's retina.
基金the support by National Key R&D Program of China(No.2019YFA0405100)the China Manned Space Project with NO.CMS-CSST-2021-A11 and+6 种基金Project 11573003 supported by the National Natural Science Foundation of China(NSFC)supported by a NASA Keck PI Data Awardpossible by the generous financial support of the W.M.Keck Foundationfunding from the National Science Centre,Poland,grant MAESTRO 2014/14/A/ST9/00121 to AUthe financial support of the ANR COLD WORLDS(ANR-18-CE31-0002)supported by the NASA Exoplanets Research Program(XRP)by cooperative agreement NNX16AD44Gsupported by the University of Tasmania through the UTAS Foundation and the endowed Warren Chair in Astronomy。
文摘We constrain the host-star flux of the microlensing planet OGLE-2014-BLG-0676 Lb using adaptive optics(AO)images taken by the Magellan and Keck telescopes.We measure the flux of the light blended with the microlensed source to be K=16.79±0.04 mag and J=17.76±0.03 mag.Assuming that the blend is the lens star,we find that the host is a 0.73_(-0.29)^(+0.14)M_(⊙)star at a distance of2.67_(-1.41)^(+0.77)kpc,where the relatively large uncertainty in angular Einstein radius measurement is the major source of uncertainty.With mass of M_(p)=3.68_(-1.44)^(+0.69)M_J,the planet is likely a"super Jupiter"at a projected separation of r_(⊥)=4.53_(-2.50)^(+1.49)AU,and a degenerate model yields a similar M_p=3.73_(-1.47)^(+0.73)M_(J)at a closer separation of r_(⊥)=2.56_(-1.41)^(+0.84)AU.Our estimates are consistent with the previous Bayesian analysis based on a Galactic model.OGLE-2014-BLG-0676 Lb belongs to a sample of planets discovered in a"secondgeneration"planetary microlensing survey and we attempt to systematically constrain host properties of this sample with high-resolution imaging to study the distribution of planets.
基金the National.Key Scientific Instrument and Equipment Devel-opment Project(Grant Nos.2012YQ120080 and 2013YQ49085903)the National Natural Science.Foundation of China(Grant No.61378064)lthe National High Technology Research and Development Program of China(Grant No.2015AA020510).
文摘It is necessary to know the distribution of the Chinese eye's aberrations in clinical environment to guide high-resolution retinal imaging system design for large Chinese population application.We collected the monochromatic wave aberration of 332 healthy eyes and 344 diseased eyes in Chinese population across a 6.0-mm pupil.The aberration statistics of Chinese eyes including healthy eyes and diseased eyes were analyzed,and some differences of aberrations between the Chinese and European race were concluded.On this basis,the requirement for adaptive optics(AO)correction of the Chinese eye's monochromatic aberrations was analyzed.The result showed that a stroke of 20μm and ability to correct aberrations up to the 8th Zernike order were needed for reflective wavefront correctors to achieve near difraction-limited imaging in both groups for a reference wavelength of 550 nm and a pupil diameter of 6.0mm.To verify the:analysis mentioned above,an A0 floodillumination system was established,and high-resolution retinal imaging in vivo was achieved for Chinese eye including both healthy and diseased eyes.