期刊文献+
共找到537篇文章
< 1 2 27 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IapsO) algorithm minimum makespan
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
2
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
3
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR optimAL Structure adaptive CONTROLLER GENETIC algorithm NEURAL Networks particle swarm optimization
下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
4
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm algorithm CHAOTIC SEQUENCES SELF-adaptive STRATEGY MULTI-OBJECTIVE optimization
下载PDF
Prediction model for permeability index by integrating case-based reasoning with adaptive particle swarm optimization
5
作者 朱红求 《High Technology Letters》 EI CAS 2009年第3期267-271,共5页
To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle ... To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle swarm optimization (PSO). The nmnber of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model. 展开更多
关键词 lead and zinc smelting permeability index prediction case-based reasoning (CBR) adaptive particle swarm optimization (PS0)
下载PDF
Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm
6
作者 Mehrdad Ahmadi Kamarposhti Hassan Shokouhandeh +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2022年第12期5041-5061,共21页
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d... The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm. 展开更多
关键词 Maximum power tracking photovoltaic system adaptive fuzzy control whale optimization algorithm particle swarm optimization
下载PDF
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
7
作者 范勤勤 颜学峰 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期197-200,共4页
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti... To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 展开更多
关键词 differential evolution algorithm particle swann optimization SELF-adaptive CO-EVOLUTION
下载PDF
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
8
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided WOA) adaptive dynamic particle swarm algorithm(AD-PSO)
下载PDF
Dynamic Weapon Target Assignment Based on Intuitionistic Fuzzy Entropy of Discrete Particle Swarm 被引量:17
9
作者 Yi Wang Jin Li +1 位作者 Wenlong Huang Tong Wen 《China Communications》 SCIE CSCD 2017年第1期169-179,共11页
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz... Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem. 展开更多
关键词 intuitionistic fuzzy entropy discrete particle swarm optimization algorithm 0-1 knapsack problem weapon target assignment
下载PDF
基于GPR代理模型和GA-APSO混合优化算法的软基水闸底板脱空反演 被引量:4
10
作者 李火坤 柯贤勇 +3 位作者 黄伟 刘双平 唐义员 方静 《振动与冲击》 EI CSCD 北大核心 2023年第14期1-10,29,共11页
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自... 软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。 展开更多
关键词 软基水闸 底板脱空反演 动力学方法 高斯过程回归(GPR)代理模型 遗传-自适应惯性权重粒子群(GA-apsO)混合优化算法
下载PDF
应用APSO改进BP-PID的PEMFC热管理系统温度控制研究 被引量:1
11
作者 杨何 赵津 +1 位作者 刘照 吴佳勇 《重庆理工大学学报(自然科学)》 北大核心 2023年第9期332-339,共8页
针对城市客车大功率质子交换膜燃料电池(PEMFC)热管理系统在连续变载工作参数变化时温度波动大、响应速度差等问题,提出以自适应粒子群优化算法(APSO)改进BP神经网络比例积分微分控制(BP-PID)的控制方法(APSO-BP-PID),改善了BP-PID学习... 针对城市客车大功率质子交换膜燃料电池(PEMFC)热管理系统在连续变载工作参数变化时温度波动大、响应速度差等问题,提出以自适应粒子群优化算法(APSO)改进BP神经网络比例积分微分控制(BP-PID)的控制方法(APSO-BP-PID),改善了BP-PID学习速率慢、易于陷入局部极值问题,使燃料电池系统在工况变化时能够快速调节、减小温度波动。在Simulink平台上搭建模型仿真,以所提方法控制电堆出口温度以及进出口温差,并与BP-PID、PID 2种控制方法进行对比分析,结果表明:以APSO-BP-PID方法控制的效果更好,对比BP-PID和PID,在连续变载工况下的平均调节时间分别缩短约59 s和97 s,工作参数变化时温度波动相对降低46%和40%,所提控制方法温度波动更小、调节时间更短。 展开更多
关键词 质子交换膜燃料电池 自适应粒子群优化算法 神经网络PID 热管理
下载PDF
无人驾驶汽车跨区域的APSO联合任务卸载优化
12
作者 杨勇毅 李陶深 +1 位作者 葛志辉 吕品 《广西大学学报(自然科学版)》 CAS 北大核心 2023年第5期1218-1226,共9页
为了解决车路协同中无人驾驶汽车跨区域计算任务卸载问题,构建了一种无人驾驶汽车和路侧单元(road side unit,RSU)的联合任务卸载优化模型,旨在将计算任务的总能耗和时延的加权和最小化,即求出计算任务的总能耗和时延的加权和的最小值,... 为了解决车路协同中无人驾驶汽车跨区域计算任务卸载问题,构建了一种无人驾驶汽车和路侧单元(road side unit,RSU)的联合任务卸载优化模型,旨在将计算任务的总能耗和时延的加权和最小化,即求出计算任务的总能耗和时延的加权和的最小值,为此提出自适应粒子群优化算法(adaptive particle swarm optimization,APSO)优化车辆计算任务卸载过程中的任务卸载策略和任务发射功率来达到计算任务的总能耗和时延的加权和的最小值。结果表明:基于APSO的无人驾驶汽车的跨区域联合任务卸载优化模型能显著降低无人驾驶汽车计算任务的总能耗和时延的加权和,同时对于所构建的跨区域联合任务卸载优化模型采用APSO求解优于采用模拟退火算法(simulated annealing,SA)和遗传算法(genetic algorithm,GA)求解。 展开更多
关键词 车路协同 无人驾驶汽车 移动边缘计算 任务卸载策略 自适应粒子群优化算法
下载PDF
基于相似日和CAPSO-SNN的光伏发电功率预测 被引量:31
13
作者 陈通 孙国强 +4 位作者 卫志农 臧海祥 孙永辉 Kwok W Cheung 李慧杰 《电力自动化设备》 EI CSCD 北大核心 2017年第3期66-71,共6页
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强... 针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 展开更多
关键词 光伏发电 功率预测 SPIKING神经网络 云自适应粒子群优化算法 相似日选取
下载PDF
基于CAPSO算法的修正炮弹分数阶控制器设计 被引量:11
14
作者 鲍雪 王大志 杨永生 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第11期2556-2562,共7页
为了提高修正炮弹系统模型的控制品质,采用分数阶控制器以取得更优的控制效果。针对分数阶控制器参数整定时大都需要公式推导、计算量大等问题,提出一种基于混沌自适应粒子群优化算法(CAPSO)并用于修正炮弹分数阶控制器的设计。将混沌... 为了提高修正炮弹系统模型的控制品质,采用分数阶控制器以取得更优的控制效果。针对分数阶控制器参数整定时大都需要公式推导、计算量大等问题,提出一种基于混沌自适应粒子群优化算法(CAPSO)并用于修正炮弹分数阶控制器的设计。将混沌算法与惯性权重调整的粒子群算法融合,对粒子群进行混沌初始化并对陷入局部最优的粒子进行混沌搜索,同时引入惯性权重非线性调整策略提高了算法的收敛精度,得到全局最优解。利用CAPSO算法对分数阶PIλDμ控制器的参数进行整定,并用于修正炮弹俯仰角稳定回路的控制中。通过仿真实验,验证了该优化算法的可行性。仿真结果表明,CAPSO算法在修正炮弹分数阶控制器的参数整定方面优于主导极点法、粒子群优化算法(PSO)等算法,与PSO算法相比调节时间减少了1.139 s、超调量减小了11.84%,具有收敛速度快、超调量小、稳定性好、抗干扰性强等特点;经CAPSO算法优化的分数阶PIλDμ控制器动态响应特性要优于整数阶PID控制器。 展开更多
关键词 分数阶PIλDμ控制器 修正炮弹 混沌自适应粒子群优化算法 惯性权重
下载PDF
基于SAPSO-BP神经网络的井下自适应定位算法 被引量:9
15
作者 莫树培 唐琎 +1 位作者 杜永万 陈明 《工矿自动化》 北大核心 2019年第7期80-85,共6页
针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化B... 针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化BP神经网络的初始权值和阈值,以加快训练收敛速度,使之到达全局最优;通过安装在井下巷道中的无线校准器采集目标点接收信号强度指示(RSSI)值,采用自适应动态校准方法对RSSI值进行实时校准,以减小强时变性电磁环境对定位精度的影响;最后利用SAPSO-BP神经网络估算出目标点位置坐标。实验结果表明,该算法的定位误差在2m内的置信概率为77.54%,平均误差为1.53m,定位性能优于未校准SAPSO-BP神经网络算法、PSO-BP神经网络算法、BP神经网络算法。 展开更多
关键词 井下人员定位 自适应定位 模拟退火思想的粒子群优化算法 SapsO-BP神经网络 自适应动态校准
下载PDF
基于APSO-BP耦合算法的岩体力学参数反馈研究 被引量:6
16
作者 杜小凯 任青文 +2 位作者 郑治 张国华 许传华 《中国矿业大学学报》 EI CAS CSCD 北大核心 2008年第6期756-762,共7页
提出了基于自适应粒子群优化(APSO)与误差反向传播(BP)神经网络耦合反馈分析模型(APSO-BP).模型实现对网络结构、权重、阈值的同时优化,借助自适应粒子群算法全局优化能力强、收敛速度快的特点,提高了模型运算效率.采用Schaffer基准函... 提出了基于自适应粒子群优化(APSO)与误差反向传播(BP)神经网络耦合反馈分析模型(APSO-BP).模型实现对网络结构、权重、阈值的同时优化,借助自适应粒子群算法全局优化能力强、收敛速度快的特点,提高了模型运算效率.采用Schaffer基准函数对该模型和传统遗传算法、BP神经网络、粒子群与BP神经网络组合算法进行测试对比.结果表明该模型更为优越.应用该模型对索风营水电站地下岩体力学参数进行反馈分析,计算位移值与实测值吻合较好,平均误差0.22 mm. 展开更多
关键词 自适应粒子群算法 BP神经网络 反馈分析 岩体力学参数 索风营水电站
下载PDF
基于APSO算法的发电机励磁系统参数辨识 被引量:3
17
作者 李天云 姜志国 +1 位作者 袁金腾 安博 《中国电力》 CSCD 北大核心 2010年第2期26-30,共5页
针对传统辨识方法不能辨识励磁系统非线性环节的缺点,提出了一种基于自适应粒子群优化(APSO)算法的发电机励磁系统参数辨识的方法。通过建立待辨识励磁系统的传递函数结构模型,以励磁系统的实际输入作为模型的输入,以实际励磁系统和模... 针对传统辨识方法不能辨识励磁系统非线性环节的缺点,提出了一种基于自适应粒子群优化(APSO)算法的发电机励磁系统参数辨识的方法。通过建立待辨识励磁系统的传递函数结构模型,以励磁系统的实际输入作为模型的输入,以实际励磁系统和模型的输出误差最小作为目标函数,利用APSO算法对模型参数进行优化调整,最终得到满足误差要求的励磁系统参数。该方法根据输入输出采样数据直接在时域上进行参数辨识,无需经过FFT变换,方法简便,并且有效解决了励磁系统非线性环节难以有效辨识的问题。仿真结果表明,APSO算法具有较快的收敛速度和较高的辨识精度。 展开更多
关键词 励磁系统 参数辨识 自适应粒子群优化算法 目标函数
下载PDF
APSO算法在语音信号盲源分离中的研究 被引量:1
18
作者 贾亮 张霞 《沈阳航空航天大学学报》 2012年第3期71-75,共5页
将自适应粒子群优化(Adaptive Praticle Swarm Optimization)算法运用到语音信号的盲源分离中,以峰度为目标函数,通过自适应调整惯性因子,克服了收敛速度和分离效果之间的矛盾,最终实现盲源分离。该算法避免了传统的优化算法自然梯度法... 将自适应粒子群优化(Adaptive Praticle Swarm Optimization)算法运用到语音信号的盲源分离中,以峰度为目标函数,通过自适应调整惯性因子,克服了收敛速度和分离效果之间的矛盾,最终实现盲源分离。该算法避免了传统的优化算法自然梯度法稳定性差、易于陷入局部最优的不足。通过比较仿真结果和性能指标可以看出,APSO算法提高了收敛速度,改善了分离性能,表明了该算法在实现语音信号盲源分离中性能的优越性。 展开更多
关键词 信号与信息处理 语音信号 盲源分离 apsO算法 自然梯度法
下载PDF
IGAPSO-ELM:一种网络安全态势预测模型 被引量:7
19
作者 唐延强 李成海 +2 位作者 王坚 王亚男 曹波 《电光与控制》 CSCD 北大核心 2022年第2期30-35,共6页
针对网络安全态势预测,为提高预测的精确度和预测算法的收敛速度,提出一种改进遗传粒子群算法优化极限学习机(IGAPSO-ELM)的预测方法。首先,改进GAPSO中的惯性权重和学习因子,通过定义动态指数函数使算法在执行的不同阶段实现两种参数... 针对网络安全态势预测,为提高预测的精确度和预测算法的收敛速度,提出一种改进遗传粒子群算法优化极限学习机(IGAPSO-ELM)的预测方法。首先,改进GAPSO中的惯性权重和学习因子,通过定义动态指数函数使算法在执行的不同阶段实现两种参数自适应;其次,针对GAPSO中人为设定的固定交叉率和变异率,提出一种自适应交叉和变异策略;最后,以IGAPSO优化ELM的初始权值和偏差。IGAPSO既保证了种群的多样性,又提高了算法的收敛速度。通过仿真实验对比得出:IGAPSO-ELM对网络安全态势预测拟合度可达0.99,收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 网络安全态势预测 遗传粒子群算法 极限学习机 自适应调整
下载PDF
基于APSO优化算法的GCHP系统神经网络预测控制 被引量:5
20
作者 王桂洋 张亚庭 《计算机测量与控制》 北大核心 2014年第1期106-108,112,共4页
针对地源热泵(GCHP)系统的能量消耗问题,提出了一种基于自适应粒子群(APSO)优化算法和最邻近聚类径向基神经网络(RBFNN)建模的预测控制策略;首先,利用神经网络建立系统的输出预测模型,然后通过粒子群的滚动优化算法求解得到最优控制量;... 针对地源热泵(GCHP)系统的能量消耗问题,提出了一种基于自适应粒子群(APSO)优化算法和最邻近聚类径向基神经网络(RBFNN)建模的预测控制策略;首先,利用神经网络建立系统的输出预测模型,然后通过粒子群的滚动优化算法求解得到最优控制量;仿真结果表明,该方法能够在满足负荷要求的前提下,有效地降低GCHP系统在运行过程中的能量消耗。 展开更多
关键词 地源热泵系统 径向基神经网络 自适应粒子群算法 预测控制
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部