In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonli...In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.展开更多
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) ...Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.展开更多
In this paper,an observer-based adaptive prescribed performance tracking control scheme is developed for a class of uncertain multi-input multi-output nonlinear systems with or without input saturation.A novel finite-...In this paper,an observer-based adaptive prescribed performance tracking control scheme is developed for a class of uncertain multi-input multi-output nonlinear systems with or without input saturation.A novel finite-time neural network disturbance observer is constructed to estimate the system uncertainties and external disturbances.To guarantee the prescribed performance,an error transformation is applied to transfer the time-varying constraints into a constant constraint.Then,by employing a barrier Lyapunov function and the backstepping technique,an observer-based tracking control strategy is presented.It is proven that using the proposed algorithm,all the closedloop signals are bounded,and the tracking errors satisfy the predefined time-varying performance requirements.Finally,simulation results on a quadrotor system are given to illustrate the effectiveness of the proposed control scheme.展开更多
Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed ...Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed at safe and fuel-saving flight through morphing actively.Specifically,the longitudinal dynamics of a morphing aircraft with telescopic wings is modelled as a strict-feedback nonlinear system.Through fitting the expression of aerodynamic parameters by the mor-phing ratio,the model uncertainties induced by morphing errors are embedded in the dynamics.To meet the safety and fuel-saving requirements,an Adaptive Coordinated Tracking Control Scheme(ACTCS)is then proposed,which consists of a morphing control module and a tracking control module.For the morphing control module,an on-line morphing decision model is given in an optimization process with respect to the morphing ratio,and a second-order tracking filter is introduced to smooth the decision output and ensure the physical realizability.For the tracking control module,the novel adaptive controllers for the velocity and altitude subsystems are proposed based on the dynamic surface control method,in which adaptive mechanisms are designed to com-pensate for the model uncertainties.Finally,the proposed ACTCS is simulated in nine different cases of the test flight mission,to verify its effectiveness,robustness and fuel-saving effect.展开更多
Human-in-the-loop(HiTL)control is promising for the cooperative control problem of multi-agent systems(MASs)under the complicated environment.By considering the effect of human intelligence and decision making,the sys...Human-in-the-loop(HiTL)control is promising for the cooperative control problem of multi-agent systems(MASs)under the complicated environment.By considering the effect of human intelligence and decision making,the system robustness and security are notably enhanced.Hence,a distributed fixed-time tracking control problem is investigated in this paper for heterogeneous MASs based on the HiTL idea.First,a lemma of practically fixed-time stable is given where an explicit relationship of settling time and convergence domain is clearly shown.Then,under the framework of the adaptive backstepping approach,a series of modified intermediate control signals is designed to avoid the singularity problem by taking advantage of power transformation,fuzzy logic systems,and inequality schemes.Finally,the numerical example and comparison results are utilized to testify the effectiveness of the proposed method.展开更多
This paper addresses the adaptive tracking control scheme for switched nonlinear systems with unknown control gain sign. The approach relaxes the hypothesis that the upper bound of function control gain is known const...This paper addresses the adaptive tracking control scheme for switched nonlinear systems with unknown control gain sign. The approach relaxes the hypothesis that the upper bound of function control gain is known constant and the bounds of external disturbance and approximation errors of neural'networks are known. RBF neural networks (NNs) are used to approximate unknown functions and an H-infinity controller is introduced to enhance robustness. The adaptive updating laws and the admissible switching signals have been derived from switched multiple Lyapunov function method. It's proved that the resulting closed loop system is asymptotically Lyapunov stable such that the output tracking error performance and H-infinity disturbance attenuation level are well obtained. Finally, a simulation example of Forced Duffing systems is given to illustrate the effectiveness of the proposed control scheme and improve significantly the transient performance.展开更多
In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the N...In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the Nussbaum function and backstepping technique,the problems resulting from the unknown signs of the nonlinear control functions are circumvented successfully.Moreover,a new adaptive asymptotic tracking control method is presented with the fault-tolerant control framework,which is capable of realising zero-tracking performance.The stability of the controlled system is ensured through fractional Lyapunov stability analysis.Finally,the validity of the raised scheme is verified by a simulation example.展开更多
This paper is concerned with the adaptive tracking control problem of nonlinear time-varyingsystems. Based on the backstepping technology, an event-based prescribed performance controlscheme is developed. And the time...This paper is concerned with the adaptive tracking control problem of nonlinear time-varyingsystems. Based on the backstepping technology, an event-based prescribed performance controlscheme is developed. And the time-varying uncertainties of the system are handled byutilising bound estimation method. The proposed controller not only ensures the prescribedtracking performance, but also reduces the communication burden. By using Lyapunov stabilityanalysis, it is proven that all of the closed-loop signals are bounded, and the tracking errorcan converge to zero. Simultaneously, Zeno behaviour is excluded. Finally, the simulation resultsare utilised to illustrate the effectiveness of the proposed adaptive control scheme.展开更多
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g...Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.展开更多
文摘In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.
文摘Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.
基金the National Key R&D Program of China(No.2018AAA0101400)the National Natural Science Foundation of China(Nos.61921004 and 61973074)the Natural Science Foundation of Jiangsu Province,China(No.BK20202006)。
文摘In this paper,an observer-based adaptive prescribed performance tracking control scheme is developed for a class of uncertain multi-input multi-output nonlinear systems with or without input saturation.A novel finite-time neural network disturbance observer is constructed to estimate the system uncertainties and external disturbances.To guarantee the prescribed performance,an error transformation is applied to transfer the time-varying constraints into a constant constraint.Then,by employing a barrier Lyapunov function and the backstepping technique,an observer-based tracking control strategy is presented.It is proven that using the proposed algorithm,all the closedloop signals are bounded,and the tracking errors satisfy the predefined time-varying performance requirements.Finally,simulation results on a quadrotor system are given to illustrate the effectiveness of the proposed control scheme.
基金co-supported by the National Natural Science Foundation of China(Nos.62203033,62273024,62073016)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ23F030020,LZ22F030012)+1 种基金the Defense Industrial Technology Development Program,China(No.JCKY2021601B016)the Equipment Pre-research Key Laboratory Foundation,China(No.JSY6142219202210)。
文摘Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed at safe and fuel-saving flight through morphing actively.Specifically,the longitudinal dynamics of a morphing aircraft with telescopic wings is modelled as a strict-feedback nonlinear system.Through fitting the expression of aerodynamic parameters by the mor-phing ratio,the model uncertainties induced by morphing errors are embedded in the dynamics.To meet the safety and fuel-saving requirements,an Adaptive Coordinated Tracking Control Scheme(ACTCS)is then proposed,which consists of a morphing control module and a tracking control module.For the morphing control module,an on-line morphing decision model is given in an optimization process with respect to the morphing ratio,and a second-order tracking filter is introduced to smooth the decision output and ensure the physical realizability.For the tracking control module,the novel adaptive controllers for the velocity and altitude subsystems are proposed based on the dynamic surface control method,in which adaptive mechanisms are designed to com-pensate for the model uncertainties.Finally,the proposed ACTCS is simulated in nine different cases of the test flight mission,to verify its effectiveness,robustness and fuel-saving effect.
基金the National Natural Science Foundation of China(Grant Nos.62373208,62003097,62033003,61873139,62103214 and 62203245)the Talent Introduction and Cultivation Plan for Youth Innovation of Universities in Shandong Province。
文摘Human-in-the-loop(HiTL)control is promising for the cooperative control problem of multi-agent systems(MASs)under the complicated environment.By considering the effect of human intelligence and decision making,the system robustness and security are notably enhanced.Hence,a distributed fixed-time tracking control problem is investigated in this paper for heterogeneous MASs based on the HiTL idea.First,a lemma of practically fixed-time stable is given where an explicit relationship of settling time and convergence domain is clearly shown.Then,under the framework of the adaptive backstepping approach,a series of modified intermediate control signals is designed to avoid the singularity problem by taking advantage of power transformation,fuzzy logic systems,and inequality schemes.Finally,the numerical example and comparison results are utilized to testify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos. 60835001, 60804017)the Application Research Programs of Nantong City ( No. K2010057)the Open Project from digital manufacture technology Key Laboratory of Jiangsu Province (No. HGDML-0908)
文摘This paper addresses the adaptive tracking control scheme for switched nonlinear systems with unknown control gain sign. The approach relaxes the hypothesis that the upper bound of function control gain is known constant and the bounds of external disturbance and approximation errors of neural'networks are known. RBF neural networks (NNs) are used to approximate unknown functions and an H-infinity controller is introduced to enhance robustness. The adaptive updating laws and the admissible switching signals have been derived from switched multiple Lyapunov function method. It's proved that the resulting closed loop system is asymptotically Lyapunov stable such that the output tracking error performance and H-infinity disturbance attenuation level are well obtained. Finally, a simulation example of Forced Duffing systems is given to illustrate the effectiveness of the proposed control scheme and improve significantly the transient performance.
基金the Funds ofNational Science of China(Grant Nos.61973146,61773188,62173172)the Distinguished Young Scientific Research Talents Plan in Liaoning Province(Nos.XLYC1907077,JQL201915402).
文摘In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the Nussbaum function and backstepping technique,the problems resulting from the unknown signs of the nonlinear control functions are circumvented successfully.Moreover,a new adaptive asymptotic tracking control method is presented with the fault-tolerant control framework,which is capable of realising zero-tracking performance.The stability of the controlled system is ensured through fractional Lyapunov stability analysis.Finally,the validity of the raised scheme is verified by a simulation example.
基金the Funds of National Science of China[grant number 61973146]in part by the Distinguished Young Scientifific Research Talents Plan in Liaoning Province[grant number XLYC1907077]in part by the Taishan Scholar Project of Shandong Province ofChina[grant number tsqn201909097].
文摘This paper is concerned with the adaptive tracking control problem of nonlinear time-varyingsystems. Based on the backstepping technology, an event-based prescribed performance controlscheme is developed. And the time-varying uncertainties of the system are handled byutilising bound estimation method. The proposed controller not only ensures the prescribedtracking performance, but also reduces the communication burden. By using Lyapunov stabilityanalysis, it is proven that all of the closed-loop signals are bounded, and the tracking errorcan converge to zero. Simultaneously, Zeno behaviour is excluded. Finally, the simulation resultsare utilised to illustrate the effectiveness of the proposed adaptive control scheme.
基金supported by the National High-tech Research and Development Program of China
文摘Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.