期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
1
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
下载PDF
Study of impact from the genetic algorithm combined adaptive network-based fuzzy inference system model on business performance
2
作者 HUANG Jui-Ching PAN Wen-Tsao 《通讯和计算机(中英文版)》 2008年第10期52-57,共6页
关键词 遗传算法 计算方法 模糊系统 网络 电子商务
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
3
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
4
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL network adaptive NEURO-fuzzy inference System CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
5
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Adaptive network fuzzy inference system based navigation controller for mobile robotAdaptive network fuzzy inference system based navigation controller for mobile robot 被引量:1
6
作者 Panati SUBBASH Kil To CHONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第2期141-151,共11页
Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based ... Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based navigation controller for a differential drive mobile robot in an unknown environment with cluttered obstacles. Ultrasonic sensors are used to capture the environmental information around the mobile robot. A training data set required to train the ANFIS controller has been obtained by designing a fuzzy logic based navigation controller. Additive white Gaussian noise has been added to the sensor readings and fed to the trained ANFIS controller during mobile robot navigation, to account for the effect of environmental noise on sensor readings. The robustness of the proposed navigation controller has been evaluated by navigating the mobile robot in three different environments. The performance of the proposed controller has been verified by comparing the travelled path length/efficiency and bending energy obtained by the proposed method with reference mobile robot navigation controllers, such as neural network, fuzzy logic, and ANFIS. Simulation results presented in this paper show that the proposed controller has better performance compared with reference controllers and can successfully navigate in different environments without any collision with obstacles. 展开更多
关键词 adaptive network fuzzy inference system ADDITIVE WHITE GAUSSIAN noise Autonomous navigation Mobile robot
原文传递
基于ANFIS-LSSVM的计算颜色恒常性算法研究
7
作者 王兴光 罗运辉 +1 位作者 王庆 陈业红 《齐鲁工业大学学报》 CAS 2024年第2期62-72,共11页
计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模... 计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LSSVM)的简单有效的方法。该方法分为训练和预测两个阶段:在训练阶段,首先提取图像特征分别训练ANFIS、LSSVM两种初始光源估计模型,接着利用核函数变换将两种模型融合,然后利用预留训练样本进一步训练得到多元线性回归光源估计模型;在预测阶段,提取测试图像特征后,直接由训练所得模型预测得到该测试图像最终的场景光源颜色值。实验结果表明,与深度学习方法相比,本文所提方法计算复杂度较低,即使在小训练样本中也能有很好的光源估计性能。 展开更多
关键词 计算颜色恒常性 光源估计 自适应神经模糊推理系统(ANFIS) 最小二乘支持向量机(LSSVM)
下载PDF
Modelling and control PEMFC using fuzzy neural networks 被引量:1
8
作者 孙涛 闫思佳 +1 位作者 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1084-1089,共6页
Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system in... Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermo-dynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system. 展开更多
关键词 Proton exchange membrane fuel cell adaptive neural-networks fuzzy infer system MODELING Neural network
下载PDF
Diagnosis of Neem Leaf Diseases Using Fuzzy-HOBINM and ANFIS Algorithms
9
作者 K.K.Thyagharajan I.Kiruba Raji 《Computers, Materials & Continua》 SCIE EI 2021年第11期2061-2076,共16页
This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth o... This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves. 展开更多
关键词 Higher-order neural network fuzzy c-means clustering Mamdani fuzzy inference system adaptive neuro-fuzzy classifier
下载PDF
Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
10
作者 孙涛 卫东 +1 位作者 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期274-279,共6页
The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEM... The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEMFC) system involve thermody namics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematic al model and control online. This paper analyzed the characters of the PEMFC; an d used the approach and self-study ability of artificial neural networks to bui ld the model of nonlinear system, and adopted the adaptive neural-networks fuzz y infer system to build the temperature model of PEMFC which is used as the refe rence model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment. The resu lts of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) adaptive neural-networks fuzzy infer system(ANFIS) MODELING neural network
下载PDF
基于GRA-AIFNN的住宅环境性能需求研究
11
作者 何叶荣 李洋 《黑龙江科技大学学报》 CAS 2023年第3期410-417,共8页
为了让住宅环境更好的反映出居民的个性化需求,提出一种基于GRA-AIFNN的住宅环境性能评价模型,通过对居民满意度影响较大的关键因素进行模糊语言推理,利用自适应直觉模糊神经网络对输入语言进行训练,得出各因素的得分与评价等级。结果表... 为了让住宅环境更好的反映出居民的个性化需求,提出一种基于GRA-AIFNN的住宅环境性能评价模型,通过对居民满意度影响较大的关键因素进行模糊语言推理,利用自适应直觉模糊神经网络对输入语言进行训练,得出各因素的得分与评价等级。结果表明:交通道路与站点和绿植种类的得分为0.8469和0.9260,等级为A级,需求度较高;停车场地、运动器械和节能设施的得分分别为0.4159、0.5202和0.7722,等级为B级,需求度适中;景观设计、采光效果和物业服务的得分分别为0.2567、0.1972和0.3310,等级为C级,需求度偏低。该研究可为房地产开发商对住宅环境性能综合评判提供科学可靠的技术指导与支持。 展开更多
关键词 住宅环境性能 灰色关联分析 居民满意度 T-S模糊推理 自适应直觉模糊神经网络
下载PDF
Adaptive neuro fuzzy inference system for classification of water quality status 被引量:9
12
作者 Han Yan,Zhihong Zou,Huiwen Wang School of Economics and Management,Beihang University,Beijing 100191,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第12期1891-1896,共6页
An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and am... An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status. 展开更多
关键词 adaptive neuro fuzzy inference system artificial neural networks water quality status CLASSIFICATION
原文传递
基于T-S模型的自适应神经模糊推理系统及其在热工过程建模中的应用 被引量:24
13
作者 于希宁 程锋章 +1 位作者 朱丽玲 王毅佳 《中国电机工程学报》 EI CSCD 北大核心 2006年第15期78-82,共5页
在工业热工过程控制中,被控对象动态特性往往表现出非线性、时变性、大迟延和大惯性等特点,这使得难以对其建立比较精确的模型,从而难于精确表达热工过程及实施整体优化控制。针对热工过程建模难的现状,为达到建立精确非线性模型的目的... 在工业热工过程控制中,被控对象动态特性往往表现出非线性、时变性、大迟延和大惯性等特点,这使得难以对其建立比较精确的模型,从而难于精确表达热工过程及实施整体优化控制。针对热工过程建模难的现状,为达到建立精确非线性模型的目的,提出1种基于T-S模型的自适应神经模糊系统(ANFIS)模糊建模方法。该方法通过对模糊系统的结构辨识和参数辨识,使神经模糊网络能够自主、迅速有效地收敛到要求的输入和输出关系,从而达到精确建模的目的。仿真结果验证了所提出的算法的有效性,将其应用到热工过程建模中可获得高精度的非线性模型。 展开更多
关键词 热工过程 自适应神经模糊推理系统 模糊建模 神经网络 非线性
下载PDF
减法聚类-ANFIS在网络故障诊断的应用研究 被引量:14
14
作者 蒋静芝 孟相如 +1 位作者 李欢 庄绪春 《计算机工程与应用》 CSCD 北大核心 2011年第8期76-78,86,共4页
提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-AN... 提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-ANFIS的建模方法是有效的;通过仿真结果比较,减法聚类-ANFIS的网络故障诊断能力及收敛速度均优于BP神经网络,更适合作为网络故障诊断模型。 展开更多
关键词 网络故障诊断 减法聚类 自适应模糊神经网络 模糊逻辑 神经网络
下载PDF
基于GA-ANFIS的开关磁阻电机建模 被引量:13
15
作者 许爱德 樊印海 李自强 《电机与控制学报》 EI CSCD 北大核心 2011年第7期54-59,共6页
针对在使用自适应神经网络模糊推理系统对开关磁阻电机进行建模的过程中收敛速度慢的问题,采用将遗传算法和自适应神经网络模糊推理系统相结合的开关磁阻电机建模方法。网络结构仍然采用具有很强鲁棒性和自适应性的Takagi-Sugeno模型,... 针对在使用自适应神经网络模糊推理系统对开关磁阻电机进行建模的过程中收敛速度慢的问题,采用将遗传算法和自适应神经网络模糊推理系统相结合的开关磁阻电机建模方法。网络结构仍然采用具有很强鲁棒性和自适应性的Takagi-Sugeno模型,而在网络参数训练时将遗传算法与自适应神经网络模糊推理系统的传统混合学习算法相结合,以提高训练速度。根据实测的8/6极开关磁阻电机的样本数据,对开关磁阻电机的电感和转矩进行建模,仿真结果表明,该方法具有很高的精确度和很强的泛化能力,并且将收敛速度提高了两倍多。将所建模型应用到开关磁阻电机控制系统仿真中,并与实际控制系统进行对比,两者结果基本一致,证明了该方法的正确性和可行性。 展开更多
关键词 开关磁阻电机 建模 自适应网络模糊推理系统 遗传算法
下载PDF
基于T-S模型的锌钡白干燥煅烧过程自适应神经模糊推理系统建模 被引量:5
16
作者 朱燕飞 蔡永昶 毛宗源 《信息与控制》 CSCD 北大核心 2004年第4期472-475,共4页
针对锌钡白干燥煅烧过程建模难的问题 ,提出了一种基于T S模型的自适应神经模糊推理系统(ANFIS)建模方法 .通过对模糊辨识系统的结构辨识和参数辨识 ,使网络自主、迅速地收敛到要求的输入输出关系 .文章讨论了该网络的结构和学习算法 ,... 针对锌钡白干燥煅烧过程建模难的问题 ,提出了一种基于T S模型的自适应神经模糊推理系统(ANFIS)建模方法 .通过对模糊辨识系统的结构辨识和参数辨识 ,使网络自主、迅速地收敛到要求的输入输出关系 .文章讨论了该网络的结构和学习算法 ,并通过仿真研究得出其良好的实际应用价值 . 展开更多
关键词 神经网络 模糊逻辑 自适应神经模糊推理系统 锌钡白
下载PDF
WT-ANFIS在孤岛检测中的应用研究 被引量:3
17
作者 周皓 李维刚 +2 位作者 童朝南 李伟力 茆美琴 《电机与控制学报》 EI CSCD 北大核心 2016年第1期35-42,共8页
针对传统被动式孤岛检测法存在检测时间长、盲区大,而主动式孤岛检测法影响电能质量的缺点,提出一种新的基于模糊神经网络与小波变换的孤岛检测方法。该方法首先采集逆变器输出的电流信号和公共耦合点处的电压信号,再将该电流信号和电... 针对传统被动式孤岛检测法存在检测时间长、盲区大,而主动式孤岛检测法影响电能质量的缺点,提出一种新的基于模糊神经网络与小波变换的孤岛检测方法。该方法首先采集逆变器输出的电流信号和公共耦合点处的电压信号,再将该电流信号和电压信号分别进行小波变换,然后通过对各尺度上的细节信号进行算法处理来获取适合于孤岛检测的特征向量,最后该特征向量通过模糊神经网络进行模式识别来判断系统是否发生孤岛现象。仿真与实验结果表明,该方法在并网逆变器功率与本地负载功率匹配及失配的多种条件下均能有效识别,具有检测速度快,盲区小,对电能质量无影响等优点,并且适合于单相、三相光伏并网系统。 展开更多
关键词 孤岛检测 小波变换 模糊神经网络 细节信号 特征向量
下载PDF
应对零日攻击的混合车联网入侵检测系统
18
作者 方介泼 陶重犇 《计算机应用》 CSCD 北大核心 2024年第9期2763-2769,共7页
现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测... 现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测系统。首先,设计了一种数据增强算法,通过先去除噪声再生成的方法解决了数据样本不平衡的问题;其次,将非线性特征交互引入复杂的特征组合,设计了一个特征工程模块;最后,将Transformer的自注意力机制和ANFIS的自适应学习方法相结合,以提高特征表征能力,减少对样本数据的依赖。在CICIDS-2017和UNSW-NB15入侵数据集上将所提系统与Dual-IDS等先进(SOTA)算法进行比较。实验结果表明,对于零日攻击,所提系统在CICIDS-2017入侵数据集上实现了98.64%的检测精确率和98.31%的F1值,在UNSW-NB15入侵数据集上实现了93.07%的检测精确率和92.43%的F1值,验证了所提算法在零日攻击检测方面的高准确性和强泛化能力。 展开更多
关键词 车联网 入侵检测 零日攻击 TRANSFORMER 自适应模糊神经网络推理系统
下载PDF
基于GA-ANFIS在石灰矿技术经济系统中的参数优化研究与应用实践 被引量:3
19
作者 杨仕教 戴剑勇 曾晟 《中国工程科学》 2005年第6期61-65,共5页
为掌握水泥原料矿山系统中的技术经济参数对矿石成本影响的关联规律性,首先运用自适应模糊神经网络对矿山技术经济系统建模,再用并行遗传算法对模型求解,得到了确保矿石成本最小的各项最优技术经济指标,为提高矿山生产管理与经济效益提... 为掌握水泥原料矿山系统中的技术经济参数对矿石成本影响的关联规律性,首先运用自适应模糊神经网络对矿山技术经济系统建模,再用并行遗传算法对模型求解,得到了确保矿石成本最小的各项最优技术经济指标,为提高矿山生产管理与经济效益提供了重要的参考价值。 展开更多
关键词 自适应模糊神经网络 并行遗传算法 技术经济参数
下载PDF
基于模糊-神经网络的援例支持系 被引量:9
20
作者 葛永利 薛华成 《管理科学学报》 1998年第2期62-66,共5页
针对援例支持系统中常要遇到的模糊性问题 ,提出了一种基于模糊 -神经网络的援例支持系统 (FNCBSS) .作为一种智能决策支持系统 ,因为它具有模糊逻辑推理和学习的功能 ,故而更接近人类思维的认知过程 .给出了其原理结构图 ,并对之进行... 针对援例支持系统中常要遇到的模糊性问题 ,提出了一种基于模糊 -神经网络的援例支持系统 (FNCBSS) .作为一种智能决策支持系统 ,因为它具有模糊逻辑推理和学习的功能 ,故而更接近人类思维的认知过程 .给出了其原理结构图 ,并对之进行了分析 .指出了其理论上的可行性和实现上面临的困难 。 展开更多
关键词 援例支持系统 神经网络 模糊推理 决策支持系统
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部