There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-...There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.展开更多
Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glu...Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glutathione reductase, glutathione peroxidase activity, and serum glutathione content were elevated, and neurobehavioral scores improved. However, these effects were antagonized by mitogen-activated protein kinase inhibitor PD98059. Results indicated that electroacupuncture reversed free radical chain reactions and oxidative stress injury caused by cerebral ischemia/reperfusion, thereby providing neuroprotection. This process could correlate with the mitogen-activated protein kinase signal transduction pathway.展开更多
A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method.Rats were treated with acupuncture at either Dazhui(DU14),Renzhong(DU26), Baihui(DU20),or a non-meridian...A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method.Rats were treated with acupuncture at either Dazhui(DU14),Renzhong(DU26), Baihui(DU20),or a non-meridian point.Detection with protein-chip technology showed that the level of protein phosphorylation in both groups was upregulated or downregulated depending on the signaling pathway compared with the model group that did not receive acupuncture.Analysis of proteins showing downregulated phosphorylation revealed that five signaling pathways were activated in the acupuncture-treatment group,while only two were activated in the acupuncture-control group.In contrast,analysis of proteins showing upregulated phosphorylation revealed only one pathway was activated in the acupuncture-treatment group,whereas four pathways were activated in the acupuncture-control group.Furthermore,the number of activated proteins in the acupuncture-treatment group was not only higher than the acupuncture-control group,but unlike the acupuncture-control group,the majority of activated proteins were key proteins in the signaling pathways.Our findings indicate that acupuncture at specific points can activate multiple signaling pathways to promote the restoration of brain tissue following ischemic injury,and that this is based on a combination of effects resulting from multiple pathways,targets,and means.展开更多
To explore the role and mechanism of myeloid differentiation factor88 (MyD88) in HSP60 signal transduction in dendritic cells. Methods:Mouse DCs were cultured from murine bone marrow cells. The DC marker CDllc was ...To explore the role and mechanism of myeloid differentiation factor88 (MyD88) in HSP60 signal transduction in dendritic cells. Methods:Mouse DCs were cultured from murine bone marrow cells. The DC marker CDllc was detected by flow cytometry, then DCs were divided into control group, HSP60 groupand RNA interference group. Control group was cultured under normal condition, and HSP60 group was cultured with 10 μg/ml of HSP60. RNA interference group was first cultured with MyD88 siRNA for12 hours and then HSP60 was added into the culture mixture. All groups were cultured for 48 hours. Immunochemistry was used to detect the concentration of MyD88 and NF- κB. Western blot was used to detect the concentration of MyD88. Flow cytometry and mixed lymphocyte reaction (MLR) were used to detect the phenotype and functional properties of DCs. ELISA was used to detect the concentration of TNF-α, IFN-γ and IL-12 in the supernatant. Results:The expression of CDllc in murine bone marrow DCs was 88.76%. HSP60 stimulation increased the expression of CD80, CD86, MHC-Ⅱ in DCs and TNF-α, IFN-7, IL-12 secretion in the supernatant. HSP60 stimulation also increased the level of MyD88 in the cytoplasm and promoted the shift of NF-κB to karyon and the proliferation of allogeneic T cells. MyD88 siRNA could decreaseMyD88 and inhibit these effects induced by HSP60. Conclusion:HSP60 activates DCs through MyD88-dependent pathway. MyD88 plays a critical role in HSP60 signal transduction. Inhibition of MyD88 may be a novel way for treating disease correlated with HSP60.展开更多
G-protein-linked pathways have evolved to allow responses to extracellular agonists (hormones, neurotransmitters, odors, chemoattractants, light and nutrients) in eukaryotic cells, ranging from simpler systems, includ...G-protein-linked pathways have evolved to allow responses to extracellular agonists (hormones, neurotransmitters, odors, chemoattractants, light and nutrients) in eukaryotic cells, ranging from simpler systems, including yeasts, filamentous fungi and slime molds, to more complex organisms, such as mammals. Although the role of G-protein and mitogen-activated protein kinase (MAPK) in filamentous fungi has been studied for over a decade, downstream elements are less known, and the study of target genes has evolved mainly in recent years. Here, we examined the involvement of G-protein subunits and MAPK in controlling the expression of two distinct target genes. These genes were selected from an array database according to their unique expression profile and the role of closely related genes found in other Ascomycetes. One of these genes is BPH, which encodes the enzyme responsible for cytochrome P450-dependent benzoate hydroxylation in microsomes. The other gene is CIPA, which encodes isoflavone reductase (IfR), an enzyme involved in the synthesis of phytoalexin, which catalyzes an intermediate step in pisatin biosynthesis. The expression profile of these two genes was determined in a series of signaling deficiency mutants that were grown on different media using a DNA microarray. Comparison of the expression profile in the two wild type strains and mutants deficient in the G-protein α or β subunits or in MAPK, revealed a unique control mechanism for the BPH and CIPA genes. The two genes are highly expressed during the infection of the host plant leaves and may associate with the fungal response to the host. Signaling via G-protein or MAPK was shown to be related to cascades that altered the expression of these genes in response to the growth condition. This work demonstrates that signal transduction pathways are controlling genes that, although sharing an environmental dependent response, participate in distinct biosynthesis pathways. Moreover, the transcriptional profile may point to distinct and shared roles of the signaling components.展开更多
The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracte...The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the bio-logical behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.展开更多
In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transductlon In rice as a result of studies using multiple approaches, particularly molecular genetics. The present review ...In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transductlon In rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments In the identification of GA signaling pathway components, the discovery of GA-Induced destructlon of GA signaling repressor (DELLA protein), and the possible mechanism underlying the regulation of GA- responsive gene expression in rice.展开更多
Brassinosteroids (BRs) are a class of steroid hormones that are essential for plant growth and development. The BR signal transduction pathway in the dicot model plantArabidopsis is well established, but the compone...Brassinosteroids (BRs) are a class of steroid hormones that are essential for plant growth and development. The BR signal transduction pathway in the dicot model plantArabidopsis is well established, but the components connecting the BR signaling steps in rice have not been fully explored. For example, how the BR signaling is fine-tuned in rice, especially at the BR receptor level, is largely unknown. Here we show that OsPRA2, a rice small G protein, plays a repressive role in the BR signaling pathway. Lamina inclination, coleoptile elongation, and root inhibition assays indicated that rice plants with suppressed expression of OsPRA2 were more sensitive to exogenously applied brassinolide than the wild-type plants. Conversety, rice overexpressing OsPRA2 was less sensitive to exogenous brassinolide. Further study uncovered that OsPRA2 inhibited the dephosphorylation of, and thus inactivated the transcription factor BRASSINAZOLE- RESISTANT 1 (OsBZR1). More importantly, OsPRA2 was found to co-localize with and directly bind to rice BR receptor BRASSlNOSTEROID-INSENSITIVE 1 (OsBRI1) at the plasma membrane. Additionally, the in vitro assays showed that OsPRA2 inhibits its autophosphorylation. This OsPRA2-OsBRI1 interaction led to the dissociation of OsBRI1 from its co-receptor OsBAK1, and abolished OsBRIl-mediated phosphorylation of OsBAK1. Together, these results reveal a possible working mechanism of OsPRA2 as a novel negative regu- lator on OsBRI1 and OsBZR1 and extend the knowledge about the regulatory mechanism of rice BR signaling.展开更多
Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflam...Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflammation of respiratory passage. The mitogen-activated protein kinase (MAPK) signal transduction pathway of the airway epithelia is intimately associated with the action of LPS. The chronic inflammation of respiratory tract and smoking are interrelated and entwined in the development and progression of chronic lung diseases. This study was designed to examine the effects of cigarette smoke extract (CSE) and LPS on MAPK signal transduction pathway in order to further understand the roles CSE and LPS play in chronic lung inflammation. Methods Cultured primary human epithelial cells of airway were divided into four groups according to the stimulants used: blank control group, LPS-stimulation group, CSE-stimulation group and CSE plus LPS group. Western blotting was employed for the detection of phosphorylation level of extracellular-signal-regulated-kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase (JNK). The expression of cytokines of MAPK transduction pathway (granulocyte-macrophage colony stimulating factor (GM-CSF) and mRNA of IL-8) in the primary epithelial cells of respiratory tract was also determined. Results Western blotting revealed that the phosphorylation levels of ERK1/2, p38 MAPK and JNK were low and 2 hours after the LPS stimulation, the phosphorylation of ERK1/2, p38 MAPK and JNK were all increased. There was a significant difference in the phosphorylation between the LPS-stimulation group and blank control group (P〈0.05); no significant difference was found between CSE-stimulation group and blank control group (P〉0.05); there was a significant difference between CSE + LPS group and blank control group and between CSE + LPS group and LPS group (P〈0.05). The phosphorylation of CSE-LPS group was higher than that of blank control group but lower than that of LPS group. In blank control group, the expression of IL-8 and GM-CSF mRNA was low in the epithelial cells of airway and the release of IL-8 and GM-CSF was also at a low level. One hour after LPS stimulation, the level of IL-8 mRNA increased (P〈0.05) and reached a peak after 2 hours. On the other hand, GM-CSF mRNA level increased 2 hours after the stimulation (P〈0.05) and reached the highest level 4 hours after the stimulation. Two hours after LPS stimulation, IL-8 and GM-CSF protein level began to rise (P〈0.05), and the level was the highest 8 hours after the stimulation (P〈0.01). Stimulation with CSE alone had no effect on the release of IL-8 and GM-CSF and expression of IL-8 mRNA (P〉0.05), but pre-treatment with CSE could delay the LPS-induced release of IL-8 and GM-CSF and the expression of IL-8 mRNA and its peak was lower. Conclusions LPS stimulation can significantly increase the phosphorylation of ERK1/2, p38 MAPK and JNK in the epithelial cells of airway and activate the MAPK transduction pathway, thereby can activate the downstream signal transduction pathway, and can ultimately result in the release of cytokines by the epithelial cells of airway. CSE can partially abolish the LPS-induced activation of MAPK signal transduction pathway and the expression of cytokines of the pathway, which might contribute to the development and progression of the inflammatory reactions in COPD patients.展开更多
Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its pr...Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line. Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometric analyses were performed to investigate the Sam68 functions. Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.展开更多
Protein kinase C epsilon(PKCε)is one of major isoforms in novel PKC family.Although it has been extensively characterized in the past decade,the role of PKCεin neuron is still not well understood.Advances in molecul...Protein kinase C epsilon(PKCε)is one of major isoforms in novel PKC family.Although it has been extensively characterized in the past decade,the role of PKCεin neuron is still not well understood.Advances in molecular biology have now removed significant barriers to the direct investigation of PKCεfunctions in vivo,and PKCεhas been increasingly implicated in the neural biological functions and associated neurogenic diseases.Recent studies have provided important insights into the influence of PKCεon cortical processing at both the single cell level and network level.These studies provide compelling evidence that PKCεcould regulate distinct aspects of neural signal transduction and suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of PKCεsignal pathway in the developing brain.展开更多
Protein kinase C (PKC) consists of a family of serine/threonine kinases that are identified by the presence of two copies of the C1 domain, which form the diacylglycerol (DAG)-binding module. According to their en...Protein kinase C (PKC) consists of a family of serine/threonine kinases that are identified by the presence of two copies of the C1 domain, which form the diacylglycerol (DAG)-binding module. According to their enzymatic activities PKCs are sub-divided into conventional isozymes (PKCα, β and γ; calcium, phospholipid and DAG-activated kinases), novel isozymes (PKCδ, ε, η, μ and θ; calcium-insensitive, phospholipid-dependent and DAG-dependent), and atypical isozymes (PKCζ and λ; calcium-insensitive and DAG-insensitive enzymes). Human protein kinase Cμ and its mouse homolog, protein kinase D1 (PKD1), which has been under intense investigation in recent years, is a DAG-dependent, Ca^2+-independent serine/threonine protein kinase as a novel PKC isoform. Recently PKDs were classified as a novel subgroup of the calcium/calmodulin-dependent protein kinase (CAMK) family, based on sequence similarities of the kinase domain; the catal^ctic domain of PKD1 has the highest homology to CAMK. PKD1 has three main pathways for activation. One is DAG-phospholipase C (PLC)-PKC-dependent activation of PKD1. In this model, PKD 1 not only acts as a direct DAG target but also lies downstream of PKCs to regulate biological processes in cells.展开更多
淋巴细胞胞质蛋白2(lymphocyte cytosolic protein 2,LCP2)是一种衔接蛋白质,在T细胞受体信号通路中扮演重要角色,激活下游信号因子以完成机体的免疫应答过程。LCP2也在恶性肿瘤的发生发展与转移中发挥重要作用,其高表达会导致不良的预...淋巴细胞胞质蛋白2(lymphocyte cytosolic protein 2,LCP2)是一种衔接蛋白质,在T细胞受体信号通路中扮演重要角色,激活下游信号因子以完成机体的免疫应答过程。LCP2也在恶性肿瘤的发生发展与转移中发挥重要作用,其高表达会导致不良的预后效果,降低患者生存率,其具体作用机制涉及多条信号通路。本文不仅对LCP2的分子结构以及基本功能进行了介绍,而且重点综合评述了LCP2通过参与NF-κB、MAPK、JAK/STAT以及PD-1/PD-L1信号通路调控恶性肿瘤发生与发展的分子机制。总结了LCP2作为肿瘤治疗靶点的潜在作用,为将来用于相关疾病的诊断、治疗和标志物筛选等提供理论基础和参考依据。展开更多
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff...Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.展开更多
单磷酸腺苷激活的蛋白激酶(AMP-activated protein kinase,AMPK)是一种保守的细胞能量感受器,在调控细胞生长、增殖、分化、自噬、磷酸化、串扰以及葡萄糖和脂质代谢等方面起着重要作用,当机体能量匮乏或某些极端情况时AMPK被激活,而在...单磷酸腺苷激活的蛋白激酶(AMP-activated protein kinase,AMPK)是一种保守的细胞能量感受器,在调控细胞生长、增殖、分化、自噬、磷酸化、串扰以及葡萄糖和脂质代谢等方面起着重要作用,当机体能量匮乏或某些极端情况时AMPK被激活,而在营养过剩时被抑制,以维持能量平衡。此外,AMPK信号通路介导铁死亡发生的调控机制也体现了其独特作用,AMPK在不同细胞器里发挥特殊调控功能为疾病治疗提供了新的方向。这也是预防疾病的治疗靶标,如生殖系统疾病、衰老、癌症、炎症和心脏功能障碍等。该文综述了细胞能量不平衡对机体微环境造成的损害,AMPK通过多样性信号调控机制激发了其在疾病和药物中的潜在治疗潜力,为不同系统疾病提供了治疗新思路。通过综述AMPK信号通路的多样性调节机制,为靶向AMPK的癌症治疗和其他疾病的治疗提供理论参考。展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 30470587, No. 30600197).
文摘There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.
基金the Major Program of National Natural Science Foundation of China, No. 90209027 the National Natural Science Foundation of China, No. 30772836 the Natural Science Foundation of Jiangsu Province, No. BE2010769
文摘Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glutathione reductase, glutathione peroxidase activity, and serum glutathione content were elevated, and neurobehavioral scores improved. However, these effects were antagonized by mitogen-activated protein kinase inhibitor PD98059. Results indicated that electroacupuncture reversed free radical chain reactions and oxidative stress injury caused by cerebral ischemia/reperfusion, thereby providing neuroprotection. This process could correlate with the mitogen-activated protein kinase signal transduction pathway.
基金supported by the National Natural Science Foundation of China for Youth,No.201130901901a grant by Youth Fund Project of the Ministry of Education ofChina,No.11B092
文摘A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method.Rats were treated with acupuncture at either Dazhui(DU14),Renzhong(DU26), Baihui(DU20),or a non-meridian point.Detection with protein-chip technology showed that the level of protein phosphorylation in both groups was upregulated or downregulated depending on the signaling pathway compared with the model group that did not receive acupuncture.Analysis of proteins showing downregulated phosphorylation revealed that five signaling pathways were activated in the acupuncture-treatment group,while only two were activated in the acupuncture-control group.In contrast,analysis of proteins showing upregulated phosphorylation revealed only one pathway was activated in the acupuncture-treatment group,whereas four pathways were activated in the acupuncture-control group.Furthermore,the number of activated proteins in the acupuncture-treatment group was not only higher than the acupuncture-control group,but unlike the acupuncture-control group,the majority of activated proteins were key proteins in the signaling pathways.Our findings indicate that acupuncture at specific points can activate multiple signaling pathways to promote the restoration of brain tissue following ischemic injury,and that this is based on a combination of effects resulting from multiple pathways,targets,and means.
基金National Natural Science Foundation of China(No.30471715)
文摘To explore the role and mechanism of myeloid differentiation factor88 (MyD88) in HSP60 signal transduction in dendritic cells. Methods:Mouse DCs were cultured from murine bone marrow cells. The DC marker CDllc was detected by flow cytometry, then DCs were divided into control group, HSP60 groupand RNA interference group. Control group was cultured under normal condition, and HSP60 group was cultured with 10 μg/ml of HSP60. RNA interference group was first cultured with MyD88 siRNA for12 hours and then HSP60 was added into the culture mixture. All groups were cultured for 48 hours. Immunochemistry was used to detect the concentration of MyD88 and NF- κB. Western blot was used to detect the concentration of MyD88. Flow cytometry and mixed lymphocyte reaction (MLR) were used to detect the phenotype and functional properties of DCs. ELISA was used to detect the concentration of TNF-α, IFN-γ and IL-12 in the supernatant. Results:The expression of CDllc in murine bone marrow DCs was 88.76%. HSP60 stimulation increased the expression of CD80, CD86, MHC-Ⅱ in DCs and TNF-α, IFN-7, IL-12 secretion in the supernatant. HSP60 stimulation also increased the level of MyD88 in the cytoplasm and promoted the shift of NF-κB to karyon and the proliferation of allogeneic T cells. MyD88 siRNA could decreaseMyD88 and inhibit these effects induced by HSP60. Conclusion:HSP60 activates DCs through MyD88-dependent pathway. MyD88 plays a critical role in HSP60 signal transduction. Inhibition of MyD88 may be a novel way for treating disease correlated with HSP60.
文摘G-protein-linked pathways have evolved to allow responses to extracellular agonists (hormones, neurotransmitters, odors, chemoattractants, light and nutrients) in eukaryotic cells, ranging from simpler systems, including yeasts, filamentous fungi and slime molds, to more complex organisms, such as mammals. Although the role of G-protein and mitogen-activated protein kinase (MAPK) in filamentous fungi has been studied for over a decade, downstream elements are less known, and the study of target genes has evolved mainly in recent years. Here, we examined the involvement of G-protein subunits and MAPK in controlling the expression of two distinct target genes. These genes were selected from an array database according to their unique expression profile and the role of closely related genes found in other Ascomycetes. One of these genes is BPH, which encodes the enzyme responsible for cytochrome P450-dependent benzoate hydroxylation in microsomes. The other gene is CIPA, which encodes isoflavone reductase (IfR), an enzyme involved in the synthesis of phytoalexin, which catalyzes an intermediate step in pisatin biosynthesis. The expression profile of these two genes was determined in a series of signaling deficiency mutants that were grown on different media using a DNA microarray. Comparison of the expression profile in the two wild type strains and mutants deficient in the G-protein α or β subunits or in MAPK, revealed a unique control mechanism for the BPH and CIPA genes. The two genes are highly expressed during the infection of the host plant leaves and may associate with the fungal response to the host. Signaling via G-protein or MAPK was shown to be related to cascades that altered the expression of these genes in response to the growth condition. This work demonstrates that signal transduction pathways are controlling genes that, although sharing an environmental dependent response, participate in distinct biosynthesis pathways. Moreover, the transcriptional profile may point to distinct and shared roles of the signaling components.
基金supported by the National Natural Science Foundation of China(Grant Nos.30070835&30070294)National 863 Project.
文摘The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the bio-logical behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.
基金Publication of this paper is supported by the National Natural Science Foundation of China (30624808).
文摘In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transductlon In rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments In the identification of GA signaling pathway components, the discovery of GA-Induced destructlon of GA signaling repressor (DELLA protein), and the possible mechanism underlying the regulation of GA- responsive gene expression in rice.
文摘Brassinosteroids (BRs) are a class of steroid hormones that are essential for plant growth and development. The BR signal transduction pathway in the dicot model plantArabidopsis is well established, but the components connecting the BR signaling steps in rice have not been fully explored. For example, how the BR signaling is fine-tuned in rice, especially at the BR receptor level, is largely unknown. Here we show that OsPRA2, a rice small G protein, plays a repressive role in the BR signaling pathway. Lamina inclination, coleoptile elongation, and root inhibition assays indicated that rice plants with suppressed expression of OsPRA2 were more sensitive to exogenously applied brassinolide than the wild-type plants. Conversety, rice overexpressing OsPRA2 was less sensitive to exogenous brassinolide. Further study uncovered that OsPRA2 inhibited the dephosphorylation of, and thus inactivated the transcription factor BRASSINAZOLE- RESISTANT 1 (OsBZR1). More importantly, OsPRA2 was found to co-localize with and directly bind to rice BR receptor BRASSlNOSTEROID-INSENSITIVE 1 (OsBRI1) at the plasma membrane. Additionally, the in vitro assays showed that OsPRA2 inhibits its autophosphorylation. This OsPRA2-OsBRI1 interaction led to the dissociation of OsBRI1 from its co-receptor OsBAK1, and abolished OsBRIl-mediated phosphorylation of OsBAK1. Together, these results reveal a possible working mechanism of OsPRA2 as a novel negative regu- lator on OsBRI1 and OsBZR1 and extend the knowledge about the regulatory mechanism of rice BR signaling.
文摘Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflammation of respiratory passage. The mitogen-activated protein kinase (MAPK) signal transduction pathway of the airway epithelia is intimately associated with the action of LPS. The chronic inflammation of respiratory tract and smoking are interrelated and entwined in the development and progression of chronic lung diseases. This study was designed to examine the effects of cigarette smoke extract (CSE) and LPS on MAPK signal transduction pathway in order to further understand the roles CSE and LPS play in chronic lung inflammation. Methods Cultured primary human epithelial cells of airway were divided into four groups according to the stimulants used: blank control group, LPS-stimulation group, CSE-stimulation group and CSE plus LPS group. Western blotting was employed for the detection of phosphorylation level of extracellular-signal-regulated-kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase (JNK). The expression of cytokines of MAPK transduction pathway (granulocyte-macrophage colony stimulating factor (GM-CSF) and mRNA of IL-8) in the primary epithelial cells of respiratory tract was also determined. Results Western blotting revealed that the phosphorylation levels of ERK1/2, p38 MAPK and JNK were low and 2 hours after the LPS stimulation, the phosphorylation of ERK1/2, p38 MAPK and JNK were all increased. There was a significant difference in the phosphorylation between the LPS-stimulation group and blank control group (P〈0.05); no significant difference was found between CSE-stimulation group and blank control group (P〉0.05); there was a significant difference between CSE + LPS group and blank control group and between CSE + LPS group and LPS group (P〈0.05). The phosphorylation of CSE-LPS group was higher than that of blank control group but lower than that of LPS group. In blank control group, the expression of IL-8 and GM-CSF mRNA was low in the epithelial cells of airway and the release of IL-8 and GM-CSF was also at a low level. One hour after LPS stimulation, the level of IL-8 mRNA increased (P〈0.05) and reached a peak after 2 hours. On the other hand, GM-CSF mRNA level increased 2 hours after the stimulation (P〈0.05) and reached the highest level 4 hours after the stimulation. Two hours after LPS stimulation, IL-8 and GM-CSF protein level began to rise (P〈0.05), and the level was the highest 8 hours after the stimulation (P〈0.01). Stimulation with CSE alone had no effect on the release of IL-8 and GM-CSF and expression of IL-8 mRNA (P〉0.05), but pre-treatment with CSE could delay the LPS-induced release of IL-8 and GM-CSF and the expression of IL-8 mRNA and its peak was lower. Conclusions LPS stimulation can significantly increase the phosphorylation of ERK1/2, p38 MAPK and JNK in the epithelial cells of airway and activate the MAPK transduction pathway, thereby can activate the downstream signal transduction pathway, and can ultimately result in the release of cytokines by the epithelial cells of airway. CSE can partially abolish the LPS-induced activation of MAPK signal transduction pathway and the expression of cytokines of the pathway, which might contribute to the development and progression of the inflammatory reactions in COPD patients.
文摘Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line. Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometric analyses were performed to investigate the Sam68 functions. Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.
基金This work was supported by the National Natural Science Foundation of China(Grant No 30870785).
文摘Protein kinase C epsilon(PKCε)is one of major isoforms in novel PKC family.Although it has been extensively characterized in the past decade,the role of PKCεin neuron is still not well understood.Advances in molecular biology have now removed significant barriers to the direct investigation of PKCεfunctions in vivo,and PKCεhas been increasingly implicated in the neural biological functions and associated neurogenic diseases.Recent studies have provided important insights into the influence of PKCεon cortical processing at both the single cell level and network level.These studies provide compelling evidence that PKCεcould regulate distinct aspects of neural signal transduction and suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of PKCεsignal pathway in the developing brain.
文摘Protein kinase C (PKC) consists of a family of serine/threonine kinases that are identified by the presence of two copies of the C1 domain, which form the diacylglycerol (DAG)-binding module. According to their enzymatic activities PKCs are sub-divided into conventional isozymes (PKCα, β and γ; calcium, phospholipid and DAG-activated kinases), novel isozymes (PKCδ, ε, η, μ and θ; calcium-insensitive, phospholipid-dependent and DAG-dependent), and atypical isozymes (PKCζ and λ; calcium-insensitive and DAG-insensitive enzymes). Human protein kinase Cμ and its mouse homolog, protein kinase D1 (PKD1), which has been under intense investigation in recent years, is a DAG-dependent, Ca^2+-independent serine/threonine protein kinase as a novel PKC isoform. Recently PKDs were classified as a novel subgroup of the calcium/calmodulin-dependent protein kinase (CAMK) family, based on sequence similarities of the kinase domain; the catal^ctic domain of PKD1 has the highest homology to CAMK. PKD1 has three main pathways for activation. One is DAG-phospholipase C (PLC)-PKC-dependent activation of PKD1. In this model, PKD 1 not only acts as a direct DAG target but also lies downstream of PKCs to regulate biological processes in cells.
文摘淋巴细胞胞质蛋白2(lymphocyte cytosolic protein 2,LCP2)是一种衔接蛋白质,在T细胞受体信号通路中扮演重要角色,激活下游信号因子以完成机体的免疫应答过程。LCP2也在恶性肿瘤的发生发展与转移中发挥重要作用,其高表达会导致不良的预后效果,降低患者生存率,其具体作用机制涉及多条信号通路。本文不仅对LCP2的分子结构以及基本功能进行了介绍,而且重点综合评述了LCP2通过参与NF-κB、MAPK、JAK/STAT以及PD-1/PD-L1信号通路调控恶性肿瘤发生与发展的分子机制。总结了LCP2作为肿瘤治疗靶点的潜在作用,为将来用于相关疾病的诊断、治疗和标志物筛选等提供理论基础和参考依据。
基金sponsored by the National Natural Science Foundation of China,No.81102595the Natural Science Foundation of Guangxi,No.2012GXNSFAA053113
文摘Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.
文摘单磷酸腺苷激活的蛋白激酶(AMP-activated protein kinase,AMPK)是一种保守的细胞能量感受器,在调控细胞生长、增殖、分化、自噬、磷酸化、串扰以及葡萄糖和脂质代谢等方面起着重要作用,当机体能量匮乏或某些极端情况时AMPK被激活,而在营养过剩时被抑制,以维持能量平衡。此外,AMPK信号通路介导铁死亡发生的调控机制也体现了其独特作用,AMPK在不同细胞器里发挥特殊调控功能为疾病治疗提供了新的方向。这也是预防疾病的治疗靶标,如生殖系统疾病、衰老、癌症、炎症和心脏功能障碍等。该文综述了细胞能量不平衡对机体微环境造成的损害,AMPK通过多样性信号调控机制激发了其在疾病和药物中的潜在治疗潜力,为不同系统疾病提供了治疗新思路。通过综述AMPK信号通路的多样性调节机制,为靶向AMPK的癌症治疗和其他疾病的治疗提供理论参考。