期刊文献+
共找到3,482篇文章
< 1 2 175 >
每页显示 20 50 100
ZnO Additive Boosts Charging Speed and Cycling Stability of Electrolytic Zn–Mn Batteries 被引量:2
1
作者 Jin Wu Yang Tang +6 位作者 Haohang Xu Guandie Ma Jinhong Jiang Changpeng Xian Maowen Xu Shu‑Juan Bao Hao Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期293-304,共12页
Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish... Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability. 展开更多
关键词 Electrolytic aqueous zinc-manganese batteries Electrolyte pH value ZnO electrolyte additive Fast constant-voltage charging ability
下载PDF
Recent innovations in laser additive manufacturing of titanium alloys 被引量:1
2
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
Advances and challenges in direct additive manufacturing of dense ceramic oxides 被引量:1
3
作者 Zhiqi Fan Qiyang Tan +1 位作者 Chengwei Kang Han Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期59-94,共36页
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac... Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field. 展开更多
关键词 ceramic oxides direct additive manufacturing microstructure DEFECTS mechanical properties
下载PDF
A facile strategy for tuning the density of surface-grafted biomolecules for melt extrusion-based additive manufacturing applications 被引量:1
4
作者 I.A.O.Beeren G.Dos Santos +8 位作者 P.J.Dijkstra C.Mota J.Bauer H.Ferreira Rui L.Reis N.Neves S.Camarero-Espinosa M.B.Baker L.Moroni 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期277-291,共15页
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi... Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications. 展开更多
关键词 additive manufacturing BLENDING Surface functionalization Surface density Click chemistry HUMAN
下载PDF
Additive manufacturing of micropatterned functional surfaces:a review 被引量:1
5
作者 Aditya Chivate Chi Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期86-114,共29页
Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What ... Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures.Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties.Of the available manufacturing methods,additive manufacturing(AM)has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways.This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces,their fabrication techniques,and diverse applications.A comprehensive evaluation of micro fabrication methods is conducted,delving into their respective strengths and limitations.Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision.The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays,microneedles,and tissue scaffolds. 展开更多
关键词 additive manufacturing micropatterned surfaces drop-on-demand inkjet DLP printing
下载PDF
Additively manufactured Ti–Ta–Cu alloys for the next-generation load-bearing implants 被引量:1
6
作者 Amit Bandyopadhyay Indranath Mitra +4 位作者 Sushant Ciliveri Jose D Avila William Dernell Stuart B Goodman Susmita Bose 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期353-374,共22页
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m... Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants. 展开更多
关键词 TI6AL4V load-bearing implants additive manufacturing 3D printing antibacterial performance
下载PDF
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets 被引量:1
7
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:1
8
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 Electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
下载PDF
Interface engineering strategy via electron-defect trimethyl borate additive toward 4.7 V ultrahigh-nickel LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)battery 被引量:1
9
作者 Yilin Zhang Yuqing Chen +6 位作者 Qiu He Jinlong Ke Wei Wang Jian-Fang Wu Peng Gao Yanhua Li Jilei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期639-647,共9页
The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,th... The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,the practical application is impeded by the instability of electrode/electrolyte interface and Ni-rich cathode itself.Herein we proposed an electron-defect electrolyte additive trimethyl borate(TMB)which is paired with the commercial carbonate electrolyte to construct highly conductive fluorine-and boron-rich cathode electrolyte interface(CEI)on LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM90)surface and solid electrolyte interphase(SEI)on lithium metal surface.The modified CEI effectively mitigates the structural transformation from layered to disordered rock-salt phase,and consequently alleviate the dissolution of transition metal ions(TMs)and its“cross-talk”effect,while the enhanced SEI enables stable lithium plating/striping and thus demonstrated good compatibility between electrolyte and lithium metal anode.As a result,the common electrolyte with 1 wt%TMB enables 4.7 V NCM90/Li cell cycle stably over 100 cycles with 70%capacity retention.This work highlights the significance of the electron-defect boron compounds for designing desirable interfacial chemistries to achieve high performance NCM90/Li battery under high voltage operation. 展开更多
关键词 NCM90 batteries Electrolyte additive Trimethyl borate
下载PDF
Toluene Processed All-Polymer Solar Cells with 18%Efficiency and Enhanced Stability Enabled by Solid Additive:Comparison Between Sequential-Processing and Blend-Casting 被引量:1
10
作者 Guoping Zhang Chaoyue Zhao +13 位作者 Liangxiang Zhu Lihong Wang Wenzhao Xiong Huawei Hu Qing Bai Yaping Wang Chen Xie Peng You He Yan Dan Wu Tao Yang Mingxia Qiu Shunpu Li Guangye Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期247-254,共8页
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop... The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated. 展开更多
关键词 all-polymers solar cells sequential processing solid additive
下载PDF
Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc‑Ion Batteries 被引量:1
11
作者 Yuting Xia Rongao Tong +5 位作者 Jingxi Zhang Mingjie Xu Gang Shao Hailong Wang Yanhao Dong Chang‑An Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期41-55,共15页
Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be... Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries. 展开更多
关键词 Aqueous zinc-ion batteries Electrolyte additives DTPA-Na Chelation strength
下载PDF
Eliminating H_(2)O/HF and regulating interphase with bifunctional tolylene-2,4-diisocyanate(TDI)additive for long life Li-ion battery 被引量:1
12
作者 Xueyi Zeng Xiang Gao +8 位作者 Peiqi Zhou Haijia Li Xin He Weizhen Fan Chaojun Fan Tianxiang Yang Zhen Ma Xiaoyang Zhao Junmin Nan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期519-528,I0011,共11页
Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challengi... Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challenging.Especially when the battery is operated under high temperature,the trace water present in the electrolyte will accelerate the hydrolysis of the electrolyte and the resulting HF will further erode the interphase.In order to enhance the long-term cycling performance of graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)LIBs,herein,Tolylene-2,4-diisocyanate(TDI)additive containing lone-pair electrons is employed to formulate a novel bifunctional electrolyte aimed at eliminating H_(2)O/HF generated at elevated temperature.After 1000 cycles at 25℃,the battery incorporating the TDI-containing electrolyte exhibits an impressive capacity retention of 94%at 1 C.In contrast,the battery utilizing the blank electrolyte has a lower capacity retention of only 78%.Furthermore,after undergoing 550 cycles at 1 C under45℃,the inclusion of TDI results in a notable enhancement of capacity,increasing it from 68%to 80%.This indicates TDI has a favorable influence on the cycling performance of LIBs,especially at elevated temperatures.The analysis of the film formation mechanism suggests that the lone pair of electrons of the isocyanate group in TDI play a crucial role in inhibiting the generation of H_(2)O and HF,which leads to the formation of a thin and dense interphase.The existence of this interphase is thought to substantially enhance the cycling performance of the LIBs.This work not only improves the performance of graphite/NCM811 batteries at room temperature and high temperature by eliminating H_(2)O/HF but also presents a novel strategy for advancing functional electrolyte development. 展开更多
关键词 Graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery Tolylene-2 4-diisocyanate Long-cycling performance H_(2)O/HF eliminated additive
下载PDF
Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode-Free Li-Metal Batteries 被引量:1
13
作者 Baolin Wu Chunguang Chen +4 位作者 Dmitri L.Danilov Zhiqiang Chen Ming Jiang Rüdiger-A.Eichel Peter H.L.Notten 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期84-92,共9页
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc... Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries. 展开更多
关键词 anode-free lithium metal battery dual additives in situ Raman Li growth SEI formation
下载PDF
An overview of additively manufactured metal matrix composites:preparation,performance,and challenge
14
作者 Liang-Yu Chen Peng Qin +1 位作者 Lina Zhang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期118-161,共44页
Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In ... Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs. 展开更多
关键词 additive manufacturing FEEDSTOCK metal matrix composites MICROSTRUCTURE PERFORMANCE
下载PDF
A critical review of direct laser additive manufacturing ceramics
15
作者 Dake Zhao Guijun Bi +4 位作者 Jie Chen WaiMeng Quach Ran Feng Antti Salminen Fangyong Niu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2607-2626,共20页
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin... The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics. 展开更多
关键词 3D printing laser additive manufacturing CERAMICS quality MICROSTRUCTURE mechanical properties
下载PDF
Microstructure transformations and improving wear resistance of austenitic stainless steel additively fabricated by arc-based DED process
16
作者 Ashish Yadav Manu Srivastava +1 位作者 Prashant K.Jain Sandeep Rathee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期194-204,共11页
In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orienta... In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft. 展开更多
关键词 Metal additive deposition Defence applications Arc-based DED Characterization Wear behaviour FRACTOGRAPHY
下载PDF
Post processing of additive manufactured Mg alloys:Current status,challenges,and opportunities
17
作者 Nooruddin Ansari Fatima Ghassan Alabtah +1 位作者 Mohammad I.Albakri Marwan Khraisheh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1283-1310,共28页
Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the med... Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed. 展开更多
关键词 Magnesium alloy additive manufacturing POST-PROCESSING Heat treatment HIP
下载PDF
Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function
18
作者 Luhao Yuan Dongdong Gu +8 位作者 Xin Liu Keyu Shi Kaijie Lin He Liu Han Zhang Donghua Dai Jianfeng Sun Wenxin Chen Jie Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期189-206,共18页
Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.... Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities. 展开更多
关键词 additive manufacturing laser powder bed fusion bionic structure CUTTLEBONE mechanical properties shape memory function
下载PDF
Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy
19
作者 ZHANG Tao QIN Zhen-yang +2 位作者 GONG Hai WU Yun-xin CHEN Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2181-2193,共13页
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli... Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening. 展开更多
关键词 wire-arc additive manufacture inter-layer cold rolling thermal-mechanical treatment microstructure mechanical properties strengthening mechanism
下载PDF
Interfacial modulation of bifunctional electrolyte additive engineering for dendrite-free and robust lithium metal anode
20
作者 Mahammad Rafi Shaik Yongmin Park +1 位作者 Young-Kwang Jung Won Bin Im 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期120-127,I0003,共9页
Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on... Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries. 展开更多
关键词 Lithium rechargeable battery Dendrite-free Electrolyte additive Bifunctional electrolyte Interfacial layer
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部