Adopting the borrowed address algorithm can decrease the orphan nodes in ZigBee networks that use distributed address assignment mechanism (DAAM). The existing borrowed address algorithms can increase the success ra...Adopting the borrowed address algorithm can decrease the orphan nodes in ZigBee networks that use distributed address assignment mechanism (DAAM). The existing borrowed address algorithms can increase the success rate of address assignment, but they have defects such as greater cost of overhead and time in founding network caused by breaking topology. To solve such problems, we propose an more efficient distributed borrowed address assignment algorithm based on topology maintenance (A2BTM) that has a topology maintenance function. It borrows address firstly from the offspring nodes in the same branch for the orphan nodes and replies distributed the request of the borrowed address message immediately, to maintain the network topology and decrease the overhead and time spent on the mechanism of borrowed address. Theoretical and simulation analyses manifest that AZBTM algorithm outperforms DAAM and its improved algorithms in terms of the overhead and time spent in founding network, on the premise of keeping a higher success rate of address assignment. Furthermore, A2BTM can lessen the influence from detour phenomenon efficiently.展开更多
There are increasing demands for mobile health applications. This paper reports the development of a mobile health profile which dedicates to mobile applications. The mobile health profile is developed in association ...There are increasing demands for mobile health applications. This paper reports the development of a mobile health profile which dedicates to mobile applications. The mobile health profile is developed in association with the ZigBee Health Care profile and the IEEE 11073 standard which is normally applied to non-mobile applications. Since mobile sensors have to be carried by patients, the mobile health profile must facilitate mobility. In this investigation, a ZigBee fixed-mobile network (ZFMN) is defined and developed to supplement the ZigBee Health Care Profile for patient monitoring. The mobility study of ZigBee is performed using a random waypoint OPNET simulation model. In a ZFMN, the critical issue of address shortage is identified and discussed. It is analyzed that the problematic address shortage in a ZFMN may generate a huge amount of orphaned end devices and thus the packet drop percentage may potentially rise to 70%, rendering the network unable to function properly. Without introducing additional governing schemes, it is evaluated that the communication of the entire ZigBee network may paralyze. Further vigorous test are performed (by OPNET) on the communication capability of ZFMN when devices are randomly moving and sending data in 1s. It is vital to point out that under the adverse condition of address shortage, the performance of a ZFMN is still encouraging as long as the packet drop percentage has been kept below 3% before running out of address. The conclusion drawn in this analysis is that the packet drop percentage should be kept below 3% to provide a satisfactory QoS for an effective mobile health application using ZFMN such as patient monitoring. Such finding is also important for other future mobile application design of ZigBee. The address shortage issue is left as an open problem that needs attention for a resolution.展开更多
基金supported by Natural Science Foundation Project of CQ CSTC (2012jjA40040)the National Natural Science Foundation of China (60972068)
文摘Adopting the borrowed address algorithm can decrease the orphan nodes in ZigBee networks that use distributed address assignment mechanism (DAAM). The existing borrowed address algorithms can increase the success rate of address assignment, but they have defects such as greater cost of overhead and time in founding network caused by breaking topology. To solve such problems, we propose an more efficient distributed borrowed address assignment algorithm based on topology maintenance (A2BTM) that has a topology maintenance function. It borrows address firstly from the offspring nodes in the same branch for the orphan nodes and replies distributed the request of the borrowed address message immediately, to maintain the network topology and decrease the overhead and time spent on the mechanism of borrowed address. Theoretical and simulation analyses manifest that AZBTM algorithm outperforms DAAM and its improved algorithms in terms of the overhead and time spent in founding network, on the premise of keeping a higher success rate of address assignment. Furthermore, A2BTM can lessen the influence from detour phenomenon efficiently.
文摘There are increasing demands for mobile health applications. This paper reports the development of a mobile health profile which dedicates to mobile applications. The mobile health profile is developed in association with the ZigBee Health Care profile and the IEEE 11073 standard which is normally applied to non-mobile applications. Since mobile sensors have to be carried by patients, the mobile health profile must facilitate mobility. In this investigation, a ZigBee fixed-mobile network (ZFMN) is defined and developed to supplement the ZigBee Health Care Profile for patient monitoring. The mobility study of ZigBee is performed using a random waypoint OPNET simulation model. In a ZFMN, the critical issue of address shortage is identified and discussed. It is analyzed that the problematic address shortage in a ZFMN may generate a huge amount of orphaned end devices and thus the packet drop percentage may potentially rise to 70%, rendering the network unable to function properly. Without introducing additional governing schemes, it is evaluated that the communication of the entire ZigBee network may paralyze. Further vigorous test are performed (by OPNET) on the communication capability of ZFMN when devices are randomly moving and sending data in 1s. It is vital to point out that under the adverse condition of address shortage, the performance of a ZFMN is still encouraging as long as the packet drop percentage has been kept below 3% before running out of address. The conclusion drawn in this analysis is that the packet drop percentage should be kept below 3% to provide a satisfactory QoS for an effective mobile health application using ZFMN such as patient monitoring. Such finding is also important for other future mobile application design of ZigBee. The address shortage issue is left as an open problem that needs attention for a resolution.