Bacterial adherence is an essential virulence factor in pathogenesis and infection. Fusobacterium nucleatum has a central role in oral biofilm architecture by acting as a bridge between early Gram-positive and late Gr...Bacterial adherence is an essential virulence factor in pathogenesis and infection. Fusobacterium nucleatum has a central role in oral biofilm architecture by acting as a bridge between early Gram-positive and late Gram-negative colonizers that do not otherwise adhere to each other. In this study, we survey a key adherence interaction of F. nucleatum with Porphyromonas gingivalis, and present evidence that multiple fusobacterial adhesins have a role in the attachment of F. nucleatum ATCC 23726 to P. gingivalis in a highly strain-dependent manner. Interaction between these species displayed varying sensitivities to arginine, galactose and lactose. Arginine was found to hamper coaggregation by at least 62% and up to 89% with several P. gingivalis strains and galactose inhibition ranged from no inhibition up to 58% with the same P. gingivalis strains. Lactose consistently inhibited F. nucleatum interaction with these P. gingivalis strains ranging from 40% to 56% decrease in coaggregation. Among the adhesins involved are the previously described Fap2 and surprisingly, RadD, which was described in an earlier study for its function in attachment of F. nucleatum to Gram-positive species. We also provide evidence for the presence of at least one additional adhesin that is sensitive to arginine but unlike Fap2 and RadD, is not a member of the autotransporter family type of fusobacterial large outer membrane proteins. The strain-specific binding profile of multiple fusobacterial adhesins to P. gingivalis highlights the heterogeneity and complexity of interspecies interactions in the oral cavity.展开更多
Mycoplasma genitalium is the main causative agent for non-gonococcal and non-chlamydial urethritis. P32 is the putative surface-exposed membrane protein of M. genitalium and it has substaintial identity in amino acid ...Mycoplasma genitalium is the main causative agent for non-gonococcal and non-chlamydial urethritis. P32 is the putative surface-exposed membrane protein of M. genitalium and it has substaintial identity in amino acid sequence with adhesin protein P30 from M. pneumoniae. Since M. pneumoniae mutants lacking P30 protein is defective in cytadherence, P32 protein has been proposed to be an essential adhesin implicated in the adherence of M. genitaliurn to host cells. The prokaryotic expression vector pET-30 ( + )/p32 was constructed in the present study, and the recombinant protein was expressed in E. coli and purified under denaturing condition. As demonstrated by the immuno- blotting analysis, the recombinant protein could react with rabbit antisera against M. genitalium, and adherence inhibition assays were performed with antisera against this recombinant protein. It was demonstrated that P32 protein apperared to be an adhesion protein of M. genitalium, thus providing the experimental basis for better understanding of the pathogenesis of M. genitalium infection and for the development of the related vaccines against the infection.展开更多
[Objective] This study aimed to establish a method for quantitative detection of mRNA transcriptional level of SS2 adhesive related-factors of Streptococcus suis serotype 2 (SS2) by fluorescent quantitative PCR. []V...[Objective] This study aimed to establish a method for quantitative detection of mRNA transcriptional level of SS2 adhesive related-factors of Streptococcus suis serotype 2 (SS2) by fluorescent quantitative PCR. []Vlethod] The gene fragments en- coding SS2 adhesive related-factors MRP, FBPS and CPS2J and a housekeeping gene aroA were amplified by reverse transcription PCR from the total RNA of SS2, cloned, and sequenced. The recombinant plasmids containing the target genes were constructed, and used as templates in Real-time PCR. [Result] Dynamic curves, stan- dard curves and melting curves of the adhesive related-factors and aroA were ob- tained by the optimized Real-time PCR system. The standard curves showed a good linear relationship between template copy number and circulation number, and the correlation coefficients (FF) of the standard curves were over 0.995. Also, these as- says were highly specific a^d there was single specific melting peak for every gene. Moreover, the assays were highly sensitive and had a detection limit of 1.0×102 copies in 1 μl of initial templates. Finally, it was highly repeatable and had a coeffi- cient of variation less than 2% for intra-assay. [Conclusion] This study will provide a way to reveal the adhesion mechanism of SS2 to different host cells at molecular level.展开更多
基金Renate Lux was supported by National Institute of Health,National Institute of Dental and Craniofacial Research DE021108 and DE018276Jane Park was supported by NIDCR grant 5T90DE022734-02
文摘Bacterial adherence is an essential virulence factor in pathogenesis and infection. Fusobacterium nucleatum has a central role in oral biofilm architecture by acting as a bridge between early Gram-positive and late Gram-negative colonizers that do not otherwise adhere to each other. In this study, we survey a key adherence interaction of F. nucleatum with Porphyromonas gingivalis, and present evidence that multiple fusobacterial adhesins have a role in the attachment of F. nucleatum ATCC 23726 to P. gingivalis in a highly strain-dependent manner. Interaction between these species displayed varying sensitivities to arginine, galactose and lactose. Arginine was found to hamper coaggregation by at least 62% and up to 89% with several P. gingivalis strains and galactose inhibition ranged from no inhibition up to 58% with the same P. gingivalis strains. Lactose consistently inhibited F. nucleatum interaction with these P. gingivalis strains ranging from 40% to 56% decrease in coaggregation. Among the adhesins involved are the previously described Fap2 and surprisingly, RadD, which was described in an earlier study for its function in attachment of F. nucleatum to Gram-positive species. We also provide evidence for the presence of at least one additional adhesin that is sensitive to arginine but unlike Fap2 and RadD, is not a member of the autotransporter family type of fusobacterial large outer membrane proteins. The strain-specific binding profile of multiple fusobacterial adhesins to P. gingivalis highlights the heterogeneity and complexity of interspecies interactions in the oral cavity.
基金National Natural Science Foundation of China(No.30570093).
文摘Mycoplasma genitalium is the main causative agent for non-gonococcal and non-chlamydial urethritis. P32 is the putative surface-exposed membrane protein of M. genitalium and it has substaintial identity in amino acid sequence with adhesin protein P30 from M. pneumoniae. Since M. pneumoniae mutants lacking P30 protein is defective in cytadherence, P32 protein has been proposed to be an essential adhesin implicated in the adherence of M. genitaliurn to host cells. The prokaryotic expression vector pET-30 ( + )/p32 was constructed in the present study, and the recombinant protein was expressed in E. coli and purified under denaturing condition. As demonstrated by the immuno- blotting analysis, the recombinant protein could react with rabbit antisera against M. genitalium, and adherence inhibition assays were performed with antisera against this recombinant protein. It was demonstrated that P32 protein apperared to be an adhesion protein of M. genitalium, thus providing the experimental basis for better understanding of the pathogenesis of M. genitalium infection and for the development of the related vaccines against the infection.
基金Supported by National Natural Science Foundation of China(31072155)Natural Science Foundation of Jiangsu Province(BK2010068)+1 种基金Fund for Independent Innovation of Agricultural Science in Jiangsu Province[CX(11)2060]Special Fund for Agroscientific Research in the Public Interest(201303041)~~
文摘[Objective] This study aimed to establish a method for quantitative detection of mRNA transcriptional level of SS2 adhesive related-factors of Streptococcus suis serotype 2 (SS2) by fluorescent quantitative PCR. []Vlethod] The gene fragments en- coding SS2 adhesive related-factors MRP, FBPS and CPS2J and a housekeeping gene aroA were amplified by reverse transcription PCR from the total RNA of SS2, cloned, and sequenced. The recombinant plasmids containing the target genes were constructed, and used as templates in Real-time PCR. [Result] Dynamic curves, stan- dard curves and melting curves of the adhesive related-factors and aroA were ob- tained by the optimized Real-time PCR system. The standard curves showed a good linear relationship between template copy number and circulation number, and the correlation coefficients (FF) of the standard curves were over 0.995. Also, these as- says were highly specific a^d there was single specific melting peak for every gene. Moreover, the assays were highly sensitive and had a detection limit of 1.0×102 copies in 1 μl of initial templates. Finally, it was highly repeatable and had a coeffi- cient of variation less than 2% for intra-assay. [Conclusion] This study will provide a way to reveal the adhesion mechanism of SS2 to different host cells at molecular level.