A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and ...A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and the generalized Rankine-Hugoniot relation, which is a system of ordinary equations, the global solution which includes delta-shock waves and vacuum is constructed.展开更多
Suitable water content plays a decisive role in the granulation of sintering mixtures.Herein,a method was proposed to predict the suitable water content for effective granulation on the basis of Litster's granulat...Suitable water content plays a decisive role in the granulation of sintering mixtures.Herein,a method was proposed to predict the suitable water content for effective granulation on the basis of Litster's granulation model.The granulation effectiveness of a sintering mixture was predicted by the model,with the allowance error of±10%.The effects of the water absorption properties,particle size composition and content of adhesive particles on the suitable water content were studied.The results showed that the allowable error of prediction was within±0.5%compared to the experimentally determined suitable water content.With an increase in adhesive powder content of mixtures with higher water absorption,the suitable water content increased to achieve similar granulation effectiveness.Moreover,as the amount of concentrates increased,the suitable water content first increased and then remained steady.The influence of the water absorption characteristics of the adhesive particles on the suitable water content was less than that of their particle size composition in the mixture.展开更多
We investigated the influence of particle shape and solubility on the caking behavior of trisodium phosphate by considering the adhesion free energy and crystal bridge theory. Caking of trisodium phosphate during the ...We investigated the influence of particle shape and solubility on the caking behavior of trisodium phosphate by considering the adhesion free energy and crystal bridge theory. Caking of trisodium phosphate during the drying process under static conditions is a two-step process: adhesion followed by crystal bridge formation between particles. The adhesion free energy plays an important role in adhesion. Trisodium phosphate particles cannot adhere to each other and cake when the adhesion free energy is greater than a critical value, which varies with particle shape. Compared with granular particles, cylindrical particles have larger contact area between particles, which results in more crystal bridges forming and a higher caking ratio. Thus, the critical value is about 100 mJ/m^2 for cylindrical particles, but 60 mJ/m^2 for granular particles at 25 ℃. Concerning the solubility, when particles are similar shapes and soluble in the rinsing liquid, the caking ratio has a linear relationship with adhesion free energy. However, if the particles are insoluble in the rinsing liquid, caking can be completely prevented regardless of adhesion free energy because no crystal bridges form during the growth process. Hence, caking of trisodium phosphate particles could be inhibited by screening rinsing liquids, and optimizing the particle shape and size distribution.展开更多
基金the National Natural Science Foundation of China(No.10671120)
文摘A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and the generalized Rankine-Hugoniot relation, which is a system of ordinary equations, the global solution which includes delta-shock waves and vacuum is constructed.
基金supported in part by the National Natural Science Foundation of China under Grant No.51804347.
文摘Suitable water content plays a decisive role in the granulation of sintering mixtures.Herein,a method was proposed to predict the suitable water content for effective granulation on the basis of Litster's granulation model.The granulation effectiveness of a sintering mixture was predicted by the model,with the allowance error of±10%.The effects of the water absorption properties,particle size composition and content of adhesive particles on the suitable water content were studied.The results showed that the allowable error of prediction was within±0.5%compared to the experimentally determined suitable water content.With an increase in adhesive powder content of mixtures with higher water absorption,the suitable water content increased to achieve similar granulation effectiveness.Moreover,as the amount of concentrates increased,the suitable water content first increased and then remained steady.The influence of the water absorption characteristics of the adhesive particles on the suitable water content was less than that of their particle size composition in the mixture.
文摘We investigated the influence of particle shape and solubility on the caking behavior of trisodium phosphate by considering the adhesion free energy and crystal bridge theory. Caking of trisodium phosphate during the drying process under static conditions is a two-step process: adhesion followed by crystal bridge formation between particles. The adhesion free energy plays an important role in adhesion. Trisodium phosphate particles cannot adhere to each other and cake when the adhesion free energy is greater than a critical value, which varies with particle shape. Compared with granular particles, cylindrical particles have larger contact area between particles, which results in more crystal bridges forming and a higher caking ratio. Thus, the critical value is about 100 mJ/m^2 for cylindrical particles, but 60 mJ/m^2 for granular particles at 25 ℃. Concerning the solubility, when particles are similar shapes and soluble in the rinsing liquid, the caking ratio has a linear relationship with adhesion free energy. However, if the particles are insoluble in the rinsing liquid, caking can be completely prevented regardless of adhesion free energy because no crystal bridges form during the growth process. Hence, caking of trisodium phosphate particles could be inhibited by screening rinsing liquids, and optimizing the particle shape and size distribution.