Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and the...Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.展开更多
Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhes...Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.展开更多
In this review paper,the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed.The durability of bonded joints is defined and presented for parameters th...In this review paper,the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed.The durability of bonded joints is defined and presented for parameters that may influence bonding quality.Presented is also,a numerical design approach for composite joining profiles used to realize adhesive bonding.It is shown that environmental ageing and pre-bond contamination of bonding surfaces may degrade significantly fracture toughness of bonded joints.Moreover,it is obvious that additional research is needed in order to design joining profiles that will enable load transfer through shearing of the bondline.These findings,together with the limited capabilities of existing non-destructive testing techniques,can partially explain the confined use of adhesive bonding in primary composite aircraft structural parts.展开更多
For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexav...For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic properties. To comply with the new strict international regulations, the Cr(VI)-era will soon have to come to an end. Anodizing aluminum in acid electrolytes produces a self-ordered porous oxide layer. Although different acids can be used to create this type of structure, the excellent adhesion and corrosion resistance that is currently achieved by the complete Cr(VI)-based process is not easily matched. This paper provides a critical overview and appraisal of proposed alternatives to CAA, including combinations of multiple anodizing steps, pre- and post anodizing treatments. The work is presented in terms of the modifications to the oxide properties, such as morphological features (e.g., pore size, barrier layer thickness) and surface chemistry, in order to evaluate the link between fundamental principles of adhesion and bond performance.展开更多
An automated approach is proposed for a microassembly task, which is to insert a 10 μm diameter glass tube into a 12 μm diameter hole in a silicon substrate, and bond them together with ultraviolet (UV) curable ad...An automated approach is proposed for a microassembly task, which is to insert a 10 μm diameter glass tube into a 12 μm diameter hole in a silicon substrate, and bond them together with ultraviolet (UV) curable adhesive. Two three-degree-of-freedom micromanipulators axe used to move the glass tube and the dispensing needle, respectively. Visual feedback is provided by an optical microscope. The angle of the microscope axis is precisely calibrated using an autofocus strategy. Robust image segmentation method and feature extraction algorithm are developed to obtain the features of the hole, the glass tube and the dispensing needle. Visual servo control is employed to achieve accurate aligning for the tube and the hole. Automated adhesive dispensing is used to bond the glass tube and the silicon substrate together after the insertion. On-line monitoring ensures that the diameter of the adhesive spot is within a desired range. Experimental results demonstrate the effectiveness of the proposed strategy.展开更多
Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding ...Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.展开更多
Bonding with adhesives is an important technique for building up hybridmicrosystems. Some adhesives are tested with capillary dispensing system for microassembly, andvolume of droplets less than 10 nl with good repeat...Bonding with adhesives is an important technique for building up hybridmicrosystems. Some adhesives are tested with capillary dispensing system for microassembly, andvolume of droplets less than 10 nl with good repeatability can be acquired. 1-part UV curingadhesive hardens rapidly and is suitable for bonding of transparent microparts. Light-activatedadhesive starts the curing process in an adjustable short period of time after the radiation ofvisible light, and thus suits bonding of non-transparent microparts. A method is proposed forbonding the guides of a miniature linear motor being developed by collaborate research center 516(SFB516) in Germany. With the method high assembly accuracy in the vertical direction can beguaranteed. By making small grooves on the stator for containing adhesive, the deterioration of theaccuracy due to the thickness of adhesive layer can be avoided. The criteria on deciding the size ofthe groove are given and analyzed. Vision based inspection method is introduced for automaticassembly of the guides. The dispensing volume and position of dispensed adhesive droplets can bedetected for ensuring the bonding quality.展开更多
The lap-shear strength and durability of adhesive bonded AI alloy joints with different pretreatments were studied by the lap-shear test and wedge test. The results indicate that the maximum lap-shear strength and dur...The lap-shear strength and durability of adhesive bonded AI alloy joints with different pretreatments were studied by the lap-shear test and wedge test. The results indicate that the maximum lap-shear strength and durability of the bonding joints pretreated by different processes are influenced by the grade of abrasive papers and can be obviously improved by phosphoric acid anodizing. Alkali etching can obviously improve the durability of bonding joints although it slightly influences the maximum lap-shear strength. The process which is composed of grit-finishing, acetone degreasing, alkali etching and phosphoric acid anodizing, provides a better adhesive bonding property of Al alloy.展开更多
The influences of chromium-free chemical conversion treatment and anodizing treatment on bonding strength of AZ31 magnesium alloy were studied by lap-shear test, SEM and electrochemical methods. Both chemical conversi...The influences of chromium-free chemical conversion treatment and anodizing treatment on bonding strength of AZ31 magnesium alloy were studied by lap-shear test, SEM and electrochemical methods. Both chemical conversion treatment and anodizing can increase the bonding strength. The anodizing treatment gives higher bonding strength and better corrosion resistance than chemical conversion treatment. The increase of bonding strength by the treatmetlts may be attributed to the uneven surface structures with micro-pores, resulting in increased bonding areas and the embedding effect.展开更多
Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to the vehicle structure is typically via a combination of either mechanical or fusion joining wit...Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to the vehicle structure is typically via a combination of either mechanical or fusion joining with adhesive bonding. Correspondingly, there has been a large effort in improving the adhesive bonding characteristics by changing the surface properties using different surface treatment techniques. One such method is the atmospheric arc discharge process which develops a specific surface roughness which can be leveraged to improve adhesive bonding. In this paper the effect of a textured surface by arc discharge on the failure mode and strength of adhesively bonded aluminum alloy sheets is investigated. A single-lap joint configuration is used for simulation and experimental analysis. A two-dimensional (2D) finite element method (FEM) involving the morphology of treated surfaces and using interfacial elements based on a cohesive zone model (CZM) are used to predict the joint strength which is an enabler for faster product development cycles. The influence of arc process parameters: the arc current and the torch scanning speed, on the surface morphology and joint strength are explored in this study. Specifically, the present study shows that the surface treatment of aluminum alloys by arc discharge can strongly enhance adhesive bond strength. Additionally, arc treatment not only increases the joint strength but also improves the quality of bond along the interface (transition toward cohesive failure mode). The current FE simulation of adhesive joint using the elastic and elasto-plastic (non-linear) material properties for adherend and adhesive, respectively, and cohesive zone elements for interface shows an accurate prediction of the resulting joint strength. By inclusion of non-linear multi-scale geometry model via considering the surface topographical changes after surface treatment the FE joint strength prediction can be successfully implemented.展开更多
This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have ...This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.展开更多
In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out byme...In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.展开更多
The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method...The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method to determine the key parameters of the adhesive layer of adhesively bonded joints in the Al–Li alloy patch-reinforced structure.A zero-thickness cohesive zone model(CZM)was selected to simulate the adhesive layer’s fracture process,and an orthogonal simulation was designed to compare against the test results.A three-dimensional progressive damage model of an Al–Li alloy patch-reinforced structure with single-lap adhesively bonded joints was developed.The simulation’s results closely agree with the test results,demonstrating that this method of determining the key parameters is likely accurate.The results also verify the correctness of the cohesive strength and fracture energy,the two key parameters of the cohesive zone model.The model can accurately predict the strength and fracture process of adhesively bonded joints,and can be used in research to suppress crack propagation in Al–Li alloy patch-reinforced structures.展开更多
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the i...This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.展开更多
The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes a...The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.展开更多
A bonding process for space solar cells implemented by an automated coating and bonding system was theoretically investigated for future parametric studies to achieve better bonding quality. First, the mechanical prop...A bonding process for space solar cells implemented by an automated coating and bonding system was theoretically investigated for future parametric studies to achieve better bonding quality. First, the mechanical properties of silicone adhesive and the vacuum suction cup were experimentally analyzed. Based on the constitutive relationship of four parts in the bonding process, the dynamic bonding process was modeled systematically, and numerically simulated by a commercial finite element analysis code, Adina. The final bonding edge-alignment error and the thickness and uniformity of the adhesive layer were obtained from simulation and validated by experiments. A simulation platform was created for predicting the final bonding quality via adjusting bonding parameters when dimensions of the solar cells and adhesive were changed.展开更多
Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and i...Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored.展开更多
A novel capacitive pressure sensor is presented, whose sensing structure is a solid-state capacitor consisting of three square membranes with Al/SiO2/n-type silicon. It was fabricated using pn junction self-stop etchi...A novel capacitive pressure sensor is presented, whose sensing structure is a solid-state capacitor consisting of three square membranes with Al/SiO2/n-type silicon. It was fabricated using pn junction self-stop etching combined with adhesive bonding,and only three masks were used during the process. Sensors with side lengths of 1000,1200,and 1400μm were fabricated,showing sensitivity of 1.8,2.3, and 3.6fF/hPa over the range of 410~ 1010hPa, respectively. The sensi- tivity of the sensor with a side length of 1500μm is 4. 6fF/hPa,the nonlinearity is 6. 4% ,and the max hysteresis is 3.6%. The results show that permittivity change plays an important part in the capacitance change.展开更多
The clinch–adhesive process,which combines mechanical clinching and adhesive bonding,is one of the most applied pro-cesses for joining aluminum alloy and steel in the manufacturing of vehicle bodies.In this hybrid pr...The clinch–adhesive process,which combines mechanical clinching and adhesive bonding,is one of the most applied pro-cesses for joining aluminum alloy and steel in the manufacturing of vehicle bodies.In this hybrid process,the clinching joints and adhesive bonds are coupled and influenced by each other,posing challenges to the process design and joining strength evaluation.To understand the influence of the clinching process on the performance of the adhesive layer,this study analyzes the mechanical behavior of clinch–adhesive joints between high-strength steel JSC780 and aluminum alloy A5052-H34 with different stack-up orientations and varying numbers of clinching points.The results reveal that,under the steel-on-top condition,the clinching process causes a discontinuous distribution of the adhesive layer,which significantly decreased the bonding strength.In contrast,under the aluminum-on-top condition,the clinching process has a lesser impact on the distribution of the adhesive layer,resulting in much higher strength than the steel-on-top condition.Simulation mod-els are constructed to quantify the effect of clinching points on the performance of the adhesive layer.The results highlight the need to consider diverse cohesive zone model parameters for the different stack orientations and clinching points in the design of clinch–adhesive aluminum alloy/steel structures.展开更多
Thermal characteristics are numerically investigated for the hybrid AlGaInAs/InP on silicon microring lasers with different ring radii and widths. Low threshold current and low active region temperature rise are expec...Thermal characteristics are numerically investigated for the hybrid AlGaInAs/InP on silicon microring lasers with different ring radii and widths. Low threshold current and low active region temperature rise are expected for a microring laser with a narrow ring width. Based on the thermal analysis and the 3D simulation for mode characteristics, a hybrid AlGaInAs/InP on silicon microring lasers with an inner n-electrode laterally confined by the p-electrode metallic layer is fabricated using an adhesive bonding technique. A threshold current of 4 mA is achieved for a hybrid microring laser with a radius of 20 μm and a ring width of 3.5 μm at 12°C, and the corresponding threshold current density is as low as 1 kA∕cm^2. The influence of the location of silicon waveguide on output performance is studied experimentally for improving the output coupling efficiency. Furthermore,continuous-wave electrically injected lasing up to 55°C is realized for a hybrid microring laser with a radiusof 30 μm and a ring width of 3 μm.展开更多
基金This work was supported by the China Postdoctoral Science Foundation(China Fund[1998]6)that was entitled“Synthesis of Modified Starch Binder and Its Application in Foundry”.Authors would like to thank academician Jinzong YANG and lecturer Hua ZHANG for the kind analyses and discussions.
文摘Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.
文摘Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.
文摘In this review paper,the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed.The durability of bonded joints is defined and presented for parameters that may influence bonding quality.Presented is also,a numerical design approach for composite joining profiles used to realize adhesive bonding.It is shown that environmental ageing and pre-bond contamination of bonding surfaces may degrade significantly fracture toughness of bonded joints.Moreover,it is obvious that additional research is needed in order to design joining profiles that will enable load transfer through shearing of the bondline.These findings,together with the limited capabilities of existing non-destructive testing techniques,can partially explain the confined use of adhesive bonding in primary composite aircraft structural parts.
文摘For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic properties. To comply with the new strict international regulations, the Cr(VI)-era will soon have to come to an end. Anodizing aluminum in acid electrolytes produces a self-ordered porous oxide layer. Although different acids can be used to create this type of structure, the excellent adhesion and corrosion resistance that is currently achieved by the complete Cr(VI)-based process is not easily matched. This paper provides a critical overview and appraisal of proposed alternatives to CAA, including combinations of multiple anodizing steps, pre- and post anodizing treatments. The work is presented in terms of the modifications to the oxide properties, such as morphological features (e.g., pore size, barrier layer thickness) and surface chemistry, in order to evaluate the link between fundamental principles of adhesion and bond performance.
基金supported by National Natural Science Foundation of China under(Nos.61227804 and 61105036)
文摘An automated approach is proposed for a microassembly task, which is to insert a 10 μm diameter glass tube into a 12 μm diameter hole in a silicon substrate, and bond them together with ultraviolet (UV) curable adhesive. Two three-degree-of-freedom micromanipulators axe used to move the glass tube and the dispensing needle, respectively. Visual feedback is provided by an optical microscope. The angle of the microscope axis is precisely calibrated using an autofocus strategy. Robust image segmentation method and feature extraction algorithm are developed to obtain the features of the hole, the glass tube and the dispensing needle. Visual servo control is employed to achieve accurate aligning for the tube and the hole. Automated adhesive dispensing is used to bond the glass tube and the silicon substrate together after the insertion. On-line monitoring ensures that the diameter of the adhesive spot is within a desired range. Experimental results demonstrate the effectiveness of the proposed strategy.
文摘Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.
文摘Bonding with adhesives is an important technique for building up hybridmicrosystems. Some adhesives are tested with capillary dispensing system for microassembly, andvolume of droplets less than 10 nl with good repeatability can be acquired. 1-part UV curingadhesive hardens rapidly and is suitable for bonding of transparent microparts. Light-activatedadhesive starts the curing process in an adjustable short period of time after the radiation ofvisible light, and thus suits bonding of non-transparent microparts. A method is proposed forbonding the guides of a miniature linear motor being developed by collaborate research center 516(SFB516) in Germany. With the method high assembly accuracy in the vertical direction can beguaranteed. By making small grooves on the stator for containing adhesive, the deterioration of theaccuracy due to the thickness of adhesive layer can be avoided. The criteria on deciding the size ofthe groove are given and analyzed. Vision based inspection method is introduced for automaticassembly of the guides. The dispensing volume and position of dispensed adhesive droplets can bedetected for ensuring the bonding quality.
文摘The lap-shear strength and durability of adhesive bonded AI alloy joints with different pretreatments were studied by the lap-shear test and wedge test. The results indicate that the maximum lap-shear strength and durability of the bonding joints pretreated by different processes are influenced by the grade of abrasive papers and can be obviously improved by phosphoric acid anodizing. Alkali etching can obviously improve the durability of bonding joints although it slightly influences the maximum lap-shear strength. The process which is composed of grit-finishing, acetone degreasing, alkali etching and phosphoric acid anodizing, provides a better adhesive bonding property of Al alloy.
基金Funded by the Key Project of Science and Technology of Ministry of Education of China(No.108129)
文摘The influences of chromium-free chemical conversion treatment and anodizing treatment on bonding strength of AZ31 magnesium alloy were studied by lap-shear test, SEM and electrochemical methods. Both chemical conversion treatment and anodizing can increase the bonding strength. The anodizing treatment gives higher bonding strength and better corrosion resistance than chemical conversion treatment. The increase of bonding strength by the treatmetlts may be attributed to the uneven surface structures with micro-pores, resulting in increased bonding areas and the embedding effect.
文摘Aluminum alloys are being increasingly applied in the automotive industry as a means to reduce mass. Their application to the vehicle structure is typically via a combination of either mechanical or fusion joining with adhesive bonding. Correspondingly, there has been a large effort in improving the adhesive bonding characteristics by changing the surface properties using different surface treatment techniques. One such method is the atmospheric arc discharge process which develops a specific surface roughness which can be leveraged to improve adhesive bonding. In this paper the effect of a textured surface by arc discharge on the failure mode and strength of adhesively bonded aluminum alloy sheets is investigated. A single-lap joint configuration is used for simulation and experimental analysis. A two-dimensional (2D) finite element method (FEM) involving the morphology of treated surfaces and using interfacial elements based on a cohesive zone model (CZM) are used to predict the joint strength which is an enabler for faster product development cycles. The influence of arc process parameters: the arc current and the torch scanning speed, on the surface morphology and joint strength are explored in this study. Specifically, the present study shows that the surface treatment of aluminum alloys by arc discharge can strongly enhance adhesive bond strength. Additionally, arc treatment not only increases the joint strength but also improves the quality of bond along the interface (transition toward cohesive failure mode). The current FE simulation of adhesive joint using the elastic and elasto-plastic (non-linear) material properties for adherend and adhesive, respectively, and cohesive zone elements for interface shows an accurate prediction of the resulting joint strength. By inclusion of non-linear multi-scale geometry model via considering the surface topographical changes after surface treatment the FE joint strength prediction can be successfully implemented.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074125)the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJA140006)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.08KJB140003)the Student Research Foundation of the Jiangsu University,China(Grant Nos.2010074 and 09A101)
文摘This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.
基金supported by Natural Science Talents Program of Lingnan Normal University(No.ZL2021011).
文摘In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.
基金Project(51575535)supported by the National Natural Science Foundation of ChinaProject(2015CX002)supported by the Innovation-driven Plan in Central South University,China+2 种基金Project(zzyjkt2013-09B)supported by the Fund of the State Key Laboratory of High Performance Manufacturing,ChinaProject(2017zzts638)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2016RS2015)supported by the Scientific and Technological Leading Talent Projects of Hunan Province,China
文摘The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method to determine the key parameters of the adhesive layer of adhesively bonded joints in the Al–Li alloy patch-reinforced structure.A zero-thickness cohesive zone model(CZM)was selected to simulate the adhesive layer’s fracture process,and an orthogonal simulation was designed to compare against the test results.A three-dimensional progressive damage model of an Al–Li alloy patch-reinforced structure with single-lap adhesively bonded joints was developed.The simulation’s results closely agree with the test results,demonstrating that this method of determining the key parameters is likely accurate.The results also verify the correctness of the cohesive strength and fracture energy,the two key parameters of the cohesive zone model.The model can accurately predict the strength and fracture process of adhesively bonded joints,and can be used in research to suppress crack propagation in Al–Li alloy patch-reinforced structures.
基金the National Natural Science Foundation of China(No.10672027)the National Basic Research Program of China(No.2006CB601205)the National Science Fund for Distin-guished Young Scholars of China(No.50625414)
文摘This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.
文摘The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.
基金the National Natural Science Foundation of China(60675040)the Specialized Researth Fund for the Doctoral Program of Higher Education(20070248021)
文摘A bonding process for space solar cells implemented by an automated coating and bonding system was theoretically investigated for future parametric studies to achieve better bonding quality. First, the mechanical properties of silicone adhesive and the vacuum suction cup were experimentally analyzed. Based on the constitutive relationship of four parts in the bonding process, the dynamic bonding process was modeled systematically, and numerically simulated by a commercial finite element analysis code, Adina. The final bonding edge-alignment error and the thickness and uniformity of the adhesive layer were obtained from simulation and validated by experiments. A simulation platform was created for predicting the final bonding quality via adjusting bonding parameters when dimensions of the solar cells and adhesive were changed.
基金supported by the National Basic Research Program of China(2006CB601205)the National Natural Science Foundation of China(10672027)the National Outstanding Young Scientist of China (50625414)
文摘Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored.
文摘A novel capacitive pressure sensor is presented, whose sensing structure is a solid-state capacitor consisting of three square membranes with Al/SiO2/n-type silicon. It was fabricated using pn junction self-stop etching combined with adhesive bonding,and only three masks were used during the process. Sensors with side lengths of 1000,1200,and 1400μm were fabricated,showing sensitivity of 1.8,2.3, and 3.6fF/hPa over the range of 410~ 1010hPa, respectively. The sensi- tivity of the sensor with a side length of 1500μm is 4. 6fF/hPa,the nonlinearity is 6. 4% ,and the max hysteresis is 3.6%. The results show that permittivity change plays an important part in the capacitance change.
基金supports of the National Key Research and Development Program of China(2022YFB3402200)Young Elite Scientists Sponsorship Program by CAST(2022-2024QNRC001)Shanghai Pujiang Program(22PJ1407200)。
文摘The clinch–adhesive process,which combines mechanical clinching and adhesive bonding,is one of the most applied pro-cesses for joining aluminum alloy and steel in the manufacturing of vehicle bodies.In this hybrid process,the clinching joints and adhesive bonds are coupled and influenced by each other,posing challenges to the process design and joining strength evaluation.To understand the influence of the clinching process on the performance of the adhesive layer,this study analyzes the mechanical behavior of clinch–adhesive joints between high-strength steel JSC780 and aluminum alloy A5052-H34 with different stack-up orientations and varying numbers of clinching points.The results reveal that,under the steel-on-top condition,the clinching process causes a discontinuous distribution of the adhesive layer,which significantly decreased the bonding strength.In contrast,under the aluminum-on-top condition,the clinching process has a lesser impact on the distribution of the adhesive layer,resulting in much higher strength than the steel-on-top condition.Simulation mod-els are constructed to quantify the effect of clinching points on the performance of the adhesive layer.The results highlight the need to consider diverse cohesive zone model parameters for the different stack orientations and clinching points in the design of clinch–adhesive aluminum alloy/steel structures.
基金supported by the High Technology Project of China under grant 2012AA012202NSFC/RGC joint project under grant 61431166003
文摘Thermal characteristics are numerically investigated for the hybrid AlGaInAs/InP on silicon microring lasers with different ring radii and widths. Low threshold current and low active region temperature rise are expected for a microring laser with a narrow ring width. Based on the thermal analysis and the 3D simulation for mode characteristics, a hybrid AlGaInAs/InP on silicon microring lasers with an inner n-electrode laterally confined by the p-electrode metallic layer is fabricated using an adhesive bonding technique. A threshold current of 4 mA is achieved for a hybrid microring laser with a radius of 20 μm and a ring width of 3.5 μm at 12°C, and the corresponding threshold current density is as low as 1 kA∕cm^2. The influence of the location of silicon waveguide on output performance is studied experimentally for improving the output coupling efficiency. Furthermore,continuous-wave electrically injected lasing up to 55°C is realized for a hybrid microring laser with a radiusof 30 μm and a ring width of 3 μm.