Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield co...Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield construction.This study presents a mechanism research of pile-soil-tunnel interaction through Pasternak-based two-stage analysis method.In the first stage,based on Mindlin’s solution,the soil displacement fields induced by shield thrust force,cutterhead frictions,shield shell frictions and grouting pressure are derived.The analytical solution of threedimensional soil displacement field is established by introducing Pinto’s three-dimensional volume loss formula,which solves the problems that shield construction factors are not taken into account in Loganathan’s formula and only twodimensional soil displacement field can be obtained.In the second stage,based on Pasternak’s two-parameter foundation model,the analytical solution of pile displacement induced by shield tunneling in layered soil is derived.A case was found in the project of interval tunnels from Wanjiali Square to Furong District Government of Changsha Metro Line 5,where the shield tunnels were constructed near viaduct piles.The reliability of the analytical solution proposed in this study is verified by comparing with the field measured data and the results of finite element method(FEM).In addition,the comparisons of longitudinal,horizontal and vertical displacements of soil and pile foundation analyzed by the analytical solution and FEM provide corresponding theoretical basis,which has significant engineering guidance for similar projects.展开更多
基金Project(52078060) supported by the National Natural Science Foundation of ChinaProject(2020JJ4606)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2018IC19) supported by the International Cooperation and Development Project of Double-First-Class Scientific Research in Changsha University of Science&Technology,ChinaProject(18ZDXK05) supported by Innovative Program of Key Disciplines with Advantages and Characteristics of Civil Engineering of Changsha University of Science&Technology,China。
文摘Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield construction.This study presents a mechanism research of pile-soil-tunnel interaction through Pasternak-based two-stage analysis method.In the first stage,based on Mindlin’s solution,the soil displacement fields induced by shield thrust force,cutterhead frictions,shield shell frictions and grouting pressure are derived.The analytical solution of threedimensional soil displacement field is established by introducing Pinto’s three-dimensional volume loss formula,which solves the problems that shield construction factors are not taken into account in Loganathan’s formula and only twodimensional soil displacement field can be obtained.In the second stage,based on Pasternak’s two-parameter foundation model,the analytical solution of pile displacement induced by shield tunneling in layered soil is derived.A case was found in the project of interval tunnels from Wanjiali Square to Furong District Government of Changsha Metro Line 5,where the shield tunnels were constructed near viaduct piles.The reliability of the analytical solution proposed in this study is verified by comparing with the field measured data and the results of finite element method(FEM).In addition,the comparisons of longitudinal,horizontal and vertical displacements of soil and pile foundation analyzed by the analytical solution and FEM provide corresponding theoretical basis,which has significant engineering guidance for similar projects.
文摘以圆形截面桩为例,基于修正后的Loganathan公式,利用文克尔弹性地基梁模型、m法计算理论和荷载传递法,建立盾构隧道近接斜交侧穿既有桥梁桩基的变形计算方法.通过现场监测结果验证计算方法的工程适用性,并利用该方法分析侧穿桥梁桩基施工引起桩身水平挠曲变形的主要影响因素.结果表明:桩身水平位移和桩顶竖向位移的理论计算结果与监测结果之间的最大误差分别不超过14.6%和2.7%.与现有方法相比,所提方法的计算结果更接近实测值.入土段桩身水平挠曲程度与隧道轴心和桩基中心轴线之间的水平距离、隧道侧穿斜交角呈负相关;最大水平挠曲位移与隧道侧穿斜交角呈负相关.当水平侧穿距离为6.0 m时,最大水平挠曲变形为7.4 mm;当隧道盾构侧穿斜交角为70.0°时,入土段桩身最大水平挠曲位移为15.4 mm.