期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
Adjacent vertex-distinguishing total colorings of K_s∨K_t
1
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
2
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
3
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
Vertex-distinguishing Total Colorings of 2Cn 被引量:6
4
作者 CHEN Xiang-en MA Yan-rong 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第3期323-330,共8页
Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct verti... Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct vertices u and v of V(G), then f is called a vertex- distinguishing total k-coloring of G. The minimum number k for which there exists a vertex- distinguishing total k-coloring of G is called the vertex-distinguishing total chromatic number of G and denoted by Xvt(G). The vertex-disjoint union of two cycles of length n is denoted by 2Cn. We will obtain Xvt(2Cn) in this paper. 展开更多
关键词 GRAPHS total coloring vertex-distinguishing total coloring vertex-distinguish-ing total chromatic number cycle
下载PDF
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
5
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
6
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER total COLORING vertex-distinguishing total COLORING vertex-distinguishing total chromatic number
下载PDF
On adjacent-vertex-distinguishing total coloring of graphs 被引量:175
7
作者 ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China Department of Computer, Lanzhou Normal College, Lanzhou 730070, China +2 位作者 Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2005年第3期289-299,共11页
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number... In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree. 展开更多
关键词 graph PROPER total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
原文传递
双圈图的邻点强可区别全染色
8
作者 周莉 文飞 李泽鹏 《数学杂志》 2023年第6期537-546,共10页
本文研究了双圈图的邻点强可区别全染色问题,并利用结构分析法给出了双圈图的邻点强可区别全色数的上界.即,当G是以∞-图为基图的双圈图时,则χ_(ast)(G)≤△(G)+2;其他χ_(ast)(G)≤△(G)+3.从而验证了张忠辅等提出的平面图的邻点强可... 本文研究了双圈图的邻点强可区别全染色问题,并利用结构分析法给出了双圈图的邻点强可区别全色数的上界.即,当G是以∞-图为基图的双圈图时,则χ_(ast)(G)≤△(G)+2;其他χ_(ast)(G)≤△(G)+3.从而验证了张忠辅等提出的平面图的邻点强可区别全染色猜想在双圈图上是成立的. 展开更多
关键词 双圈图 邻点强可区别全染色 邻点强可区别全色数
下载PDF
关于C_m×C_(5n)的全色数和邻强边色数 被引量:24
9
作者 张婷 李沐春 +2 位作者 徐保根 安常胜 左超 《兰州交通大学学报》 CAS 2007年第6期124-126,139,共4页
设G是一个简单图,k为正整数,V(G)∪E(G)到{1,2,…,k}的一个映射f满足:对于任意的uv∈E(G)有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);任意的uv,vw∈E(G),u≠w,有f(uv)≠f(uw),则称f为G的k-全染色,简记为k-TC,并称ΧT(G)=min{k|G存在k-TC}为... 设G是一个简单图,k为正整数,V(G)∪E(G)到{1,2,…,k}的一个映射f满足:对于任意的uv∈E(G)有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);任意的uv,vw∈E(G),u≠w,有f(uv)≠f(uw),则称f为G的k-全染色,简记为k-TC,并称ΧT(G)=min{k|G存在k-TC}为G的全色数.证明了圈Cm与圈C5n的笛卡尔积图的全色数和邻强边色数都为5. 展开更多
关键词 笛卡尔积图 全色数 邻强边色数
下载PDF
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
10
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
若干联图的邻点可区别I-全染色 被引量:9
11
作者 张婷 朱恩强 +1 位作者 刘晓娜 赵双柱 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期267-272,共6页
利用函数构造法和数学归纳法,考虑图P_m∨S_n,F_m∨W_n和W_m∨W_n的邻点可区别I-全染色,给出了它们邻点可区别I-全色数.
关键词 联图 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
若干路的冠图的邻点可区别V-全染色 被引量:9
12
作者 李沐春 王双莉 +1 位作者 张伟东 王立丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期97-99,共3页
根据路与完全图(星、扇、轮、路、圈)构造的冠图的结构性质,应用分析和构造函数法研究了邻点可区别V-全染色,得到了路与完全图(星、扇、轮、路、圈)构造的冠图的邻点可区别V-全色数.
关键词 冠图 邻点可区别V-全染色 邻点可区别V-全色数
下载PDF
图的邻点可区别Ⅵ-全色数的一个上界 被引量:8
13
作者 刘信生 王志强 苏旺辉 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期81-83,92,共4页
根据图的邻点可区别Ⅵ-全染色的定义,用概率方法研究了一般图的邻点可区别的Ⅵ-全色数的一个上界.如果δ150√ln,则χviat(G)(G)+1+2√ln,这里δ(G)表示图G的最小度,(G)表示图G的最大度.
关键词 概率方法 邻点可区别Ⅵ-全染色 邻点可区别Ⅵ-全色数 Lovász局部引理
下载PDF
几类图的相邻顶点可区别的全染色 被引量:7
14
作者 孙磊 孙艳丽 董海燕 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期1-4,共4页
给出了几类特殊图相邻顶点可区别的全色数,如双路间和二部(V1,V2)间叠加匹配形成的系列图、双圈(prism)、双轮.并得到边连通度λ(G)=1的图相邻顶点可区别的全染色的性质.
关键词 相邻顶点可区别的全染色 相邻顶点可区别的全色数 匹配 边连通度
下载PDF
关于图K_(2n+1)-E(2K_2)的邻点可区别全色数 被引量:12
15
作者 陈祥恩 张忠辅 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期102-105,共4页
用K2n+1-E(2K2)表示2n+1阶的完全图删掉两条不相邻的边所得到的图,给出了图K2n+1- E(2K2)的邻点可区别全色数.
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
一类2维广义格子图的邻点可区别全染色 被引量:6
16
作者 刘信生 缑艳 +1 位作者 姚兵 刘元元 《兰州理工大学学报》 CAS 北大核心 2014年第2期145-149,共5页
定义一类2维广义格子图H2(G,n,m;k1,k2).且通过从图的结构出发,利用构造染色的方法,得到图H2(C5,n,m;5,5)的邻点可区别全色数.
关键词 格子图 邻点可区别全染色 邻点可区别全色数
下载PDF
关于邻点可区别全染色的几个新结果 被引量:8
17
作者 董海燕 孙磊 孙艳丽 《广西师范大学学报(自然科学版)》 CAS 北大核心 2005年第3期41-43,共3页
邻点可区别全染色是在正常全染色的定义下,使得任两相邻顶点的色集不同.顶点v的色集是v的颜色及其与v关联的所有边的颜色.我们给出了几类特殊图的邻点可区别全色数.
关键词 简单连通图 邻点可区别全染色 邻点可区别全色数
下载PDF
若干倍图的邻点可区别均匀全染色 被引量:20
18
作者 马刚 张忠辅 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1160-1164,共5页
研究一些倍图的邻点可区别均匀全染色(AVDETC),利用构造法和匹配法给出了偶阶完全图、偶阶圈、路、星和轮的倍图的邻点可区别均匀全色数,并验证了它们满足邻点可区别均匀全染色猜想(AVDETCC).
关键词 倍图 邻点可区别均匀全染色 邻点可区别均匀全色数
下载PDF
图P_m∨W_n与W_m∨W_n的第一类弱全色数 被引量:5
19
作者 文飞 李琳 +2 位作者 胡钊 时亭亭 张玉红 《兰州交通大学学报》 CAS 2009年第3期166-169,173,共5页
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若f满足(1)uv∈E(G),u≠v,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);则称f是G的第一类弱全染色.给出了路与轮,轮与轮联图的第一类弱全色数.
关键词 联图 关联点可区别全染色 第一类弱全色数
下载PDF
关于图邻点可区别上界的一点注(英文) 被引量:4
20
作者 张忠辅 姚兵 +1 位作者 陈祥恩 王文杰 《兰州交通大学学报》 CAS 2004年第6期143-145,共3页
设G为一简单连通图 .它的一个正常全染色叫做一个邻点可区别的全染色 .如果满足 :对G的任意两个顶点u ,v,都有染点u以及与u相连的边所形成的色集与染点v以及与v相连的边所形成的色集不同 .如果一个邻点可区别的全染色需要的色数为κ ,... 设G为一简单连通图 .它的一个正常全染色叫做一个邻点可区别的全染色 .如果满足 :对G的任意两个顶点u ,v,都有染点u以及与u相连的边所形成的色集与染点v以及与v相连的边所形成的色集不同 .如果一个邻点可区别的全染色需要的色数为κ ,则把这个染色叫做k 邻点可区别的全染色 (简记为k AVDTC) .对图G ,记χ′at(G) =min{k|G有一个k AVDTC} ,称 χ′at(G)为图G的邻点可区别的全色数 . 展开更多
关键词 图的染色 邻点可区别的全染色 邻点可区别的全染色数 上界
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部