Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergenc...Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.展开更多
The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and math...The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.展开更多
Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With t...Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.展开更多
In this short note, we show the behavior in Orlicz spaces of best approximations by algebraic polynomials pairs on union of neighborhoods, when the measure of them tends to zero.
For the generalized inverse function-valued Pade approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued po...For the generalized inverse function-valued Pade approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued polynomials are first established. A useful existence condition is given by means of determinant form.展开更多
Given a regular compact set E in , a unit measure μ supported by , a triangular point set , and a function f , holomorphic on E , let πβ,fn,m be the associated multipoint β-Padé approximant of order (n,m) . W...Given a regular compact set E in , a unit measure μ supported by , a triangular point set , and a function f , holomorphic on E , let πβ,fn,m be the associated multipoint β-Padé approximant of order (n,m) . We show that if the sequence πβ,fn,m , n∈Λ , ∧∈n,k are uniformly distributed on with respect to u as n∈Λ . Furthermore, a result about the behavior of the zeros of the exact maximally convergent sequence Λ is provided, under the condition that Λ is “dense enough”.展开更多
Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which i...Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which is nearest to X in a certain matrix norm. The problem is first solved with regard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and Mirsky minimum-norm theorem.展开更多
The Asymptotic Numerical Method (ANM) is a family of algorithms for path following problems, where each step is based on the computation of truncated vector series [1]. The Vector Padé approximants were introduce...The Asymptotic Numerical Method (ANM) is a family of algorithms for path following problems, where each step is based on the computation of truncated vector series [1]. The Vector Padé approximants were introduced in the ANM to improve the domain of validity of vector series and to reduce the number of steps needed to obtain the entire solution path [1,2]. In this paper and in the framework of the ANM, we define and build a new type of Vector Padé approximant from a truncated vector series by extending the definition of the Padé approximant of a scalar series without any orthonormalization procedure. By this way, we define a new class of Vector Padé approximants which can be used to extend the domain of validity in the ANM algorithms. There is a connection between this type of Vector Padé approximant and Vector Padé type approximant introduced in [3, 4]. We show also that the Vector Padé approximants introduced in the previous works [1,2], are special cases of this class. Applications in 2D nonlinear elasticity are presented.展开更多
In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches ...In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
Convergence conclusions of Pade approximants in the univariate case can be found in various papers. However,resuhs in the multivariate case are few.A.Cuyt seems to be the only one who discusses convergence for multiva...Convergence conclusions of Pade approximants in the univariate case can be found in various papers. However,resuhs in the multivariate case are few.A.Cuyt seems to be the only one who discusses convergence for multivariate Pade approximants,she gives in[2]a de Montessus de Bollore type theorem.In this paper,we will discuss the zero set of a real multivariate polynomial,and present a convergence theorem in measure of multivariate Pade approximant.The proof technique used in this paper is quite different from that used in the univariate case.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
The structure and microstructure of constituent phases in annealed IQC100-xDQCx alloys, made from mixtures of (Al62Cu25.5Fe12.5) icosahedral quasicrystal (IQC) and (Al70Co15Ni15) decagonal quasicrystal (DQC), were...The structure and microstructure of constituent phases in annealed IQC100-xDQCx alloys, made from mixtures of (Al62Cu25.5Fe12.5) icosahedral quasicrystal (IQC) and (Al70Co15Ni15) decagonal quasicrystal (DQC), were studied by X-ray diffractometry(XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX). These constituent phases are mostly approximants: λ, β and τ3. In addition, an Al-Cu-Co DQC phase is observed in (IQC80DQC20) alloy. The nature of these approximants and their relationship with the quasicrystals(QCs) are discussed; and the evolution of these phases is interpreted by the shifting of their e/a-constant lines in the Al-(Cu, Ni)-(Fe, Co) pseudo-ternary phase diagrams.展开更多
Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly emplo...Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of...Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
文摘Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.
基金Project supported by the National Key Basic Research Project of China (Grant No 2004CB318000)the National Natural Science Foundation of China (Grant Nos 10771072 and 10735030)Shanghai Leading Academic Discipline Project of China (Grant No B412)
文摘The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.
基金supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734
文摘Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.
文摘In this short note, we show the behavior in Orlicz spaces of best approximations by algebraic polynomials pairs on union of neighborhoods, when the measure of them tends to zero.
文摘For the generalized inverse function-valued Pade approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued polynomials are first established. A useful existence condition is given by means of determinant form.
文摘Given a regular compact set E in , a unit measure μ supported by , a triangular point set , and a function f , holomorphic on E , let πβ,fn,m be the associated multipoint β-Padé approximant of order (n,m) . We show that if the sequence πβ,fn,m , n∈Λ , ∧∈n,k are uniformly distributed on with respect to u as n∈Λ . Furthermore, a result about the behavior of the zeros of the exact maximally convergent sequence Λ is provided, under the condition that Λ is “dense enough”.
文摘Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which is nearest to X in a certain matrix norm. The problem is first solved with regard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and Mirsky minimum-norm theorem.
文摘The Asymptotic Numerical Method (ANM) is a family of algorithms for path following problems, where each step is based on the computation of truncated vector series [1]. The Vector Padé approximants were introduced in the ANM to improve the domain of validity of vector series and to reduce the number of steps needed to obtain the entire solution path [1,2]. In this paper and in the framework of the ANM, we define and build a new type of Vector Padé approximant from a truncated vector series by extending the definition of the Padé approximant of a scalar series without any orthonormalization procedure. By this way, we define a new class of Vector Padé approximants which can be used to extend the domain of validity in the ANM algorithms. There is a connection between this type of Vector Padé approximant and Vector Padé type approximant introduced in [3, 4]. We show also that the Vector Padé approximants introduced in the previous works [1,2], are special cases of this class. Applications in 2D nonlinear elasticity are presented.
基金This research is suported by National Science foundation Grant.
文摘In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
基金Supported by National Science Foundation of China for Youth
文摘Convergence conclusions of Pade approximants in the univariate case can be found in various papers. However,resuhs in the multivariate case are few.A.Cuyt seems to be the only one who discusses convergence for multivariate Pade approximants,she gives in[2]a de Montessus de Bollore type theorem.In this paper,we will discuss the zero set of a real multivariate polynomial,and present a convergence theorem in measure of multivariate Pade approximant.The proof technique used in this paper is quite different from that used in the univariate case.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
文摘The structure and microstructure of constituent phases in annealed IQC100-xDQCx alloys, made from mixtures of (Al62Cu25.5Fe12.5) icosahedral quasicrystal (IQC) and (Al70Co15Ni15) decagonal quasicrystal (DQC), were studied by X-ray diffractometry(XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX). These constituent phases are mostly approximants: λ, β and τ3. In addition, an Al-Cu-Co DQC phase is observed in (IQC80DQC20) alloy. The nature of these approximants and their relationship with the quasicrystals(QCs) are discussed; and the evolution of these phases is interpreted by the shifting of their e/a-constant lines in the Al-(Cu, Ni)-(Fe, Co) pseudo-ternary phase diagrams.
基金supported by the National Natural Science Foundation of China (Grant Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos.010-63233001,63221346,63213042,and ZB22000103)+1 种基金the support from the China Postdoctoral Science Foundation (Grant No.2021M691674)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020105)。
文摘Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101441)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210111)+4 种基金National Key Research and Development Program of China(Grant No.2021YFC2203503)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23065)the Key Research and Development Program of Shaanxi in Industrial Domain(Grant No.2021GY-103)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411222203)the graduate innovation fund of Xi’an University of Posts and Electrical University(Grand No.CXJJZL2023002)。
文摘Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.