The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
Organic dye pollutants present in wastewater pose a significant global challenge.Among pollutants,the synthetic dye Rhodamine B(RB)stands out due to its non-biodegradable nature and associated neurotoxic,carcinogenic,...Organic dye pollutants present in wastewater pose a significant global challenge.Among pollutants,the synthetic dye Rhodamine B(RB)stands out due to its non-biodegradable nature and associated neurotoxic,carcinogenic,and respiratory irritant properties.Extensive research has been conducted on the efficacy of adsorption and photodegradation techniques for the removal of RB from wastewater.While adsorption and advanced oxidation processes(AOPs)have gained considerable attention for their effectiveness in recent years,the underlying behaviors and mechanisms of these technologies remain incompletely understood.Therefore,a comprehensive of recent research progress in this domain is imperative to clarify the basics and present the up-to-date achievements.This review provides an in-depth exploration of the fundamentals,advancements,and future trajectories of RB wastewater treatment technologies,mainly encompassing adsorption and photodegradation.This work starts with a general introduction of outlining the sources,toxicity,and diverse applicable removal strategies.Subsequently,it thoroughly examines crucial techniques within non-photochemical,photochemical,and adsorption technologies,such as UV light assisted AOP,catalyst assisted AOP,ozonation,Fenton system,electrochemical AOP,and adsorption technology.The primary objective is to furnish a broad overview of these techniques,elucidating their effectiveness,limitations,and applicability.Following this,the review encapsulates state-of-theart computational simulations pertaining to RB adsorption and interactions with clays and other adsorbents.Lastly,it delves into column adsorption of RB dye,and elucidates various influencing factors,including bed height,feed concentration,pollutant(RB)feeding or flow rate,and column regeneration.This panoramic review aims to provide valuable insights into suitable techniques,research gaps,and the applicability of nonphotochemical,photochemical,and adsorption technologies in the treatment of wastewater containing RB dye.展开更多
Phosphorus adsorption tests were carried out using poly-aluminum chloride sludge(PACS),which was collected from a water treatment plant in Nanjing.The amount of phosphorus adsorbed by PACS increased quickly within the...Phosphorus adsorption tests were carried out using poly-aluminum chloride sludge(PACS),which was collected from a water treatment plant in Nanjing.The amount of phosphorus adsorbed by PACS increased quickly within the first hour and reached equilibrium after about 48 h.The adsorption behavior of PACS for phosphorus is consistent with the Langmuir adsorption isotherm equation(R2>0.99)and parallel first-order kinetic equation(R2>0.98).With the increase of the PACS concentration,the adsorption capacity of PACS for phosphorus decreased,and the removal rate increased.The results of batch tests showed that the adsorption capacities of PACS for phosphorus ranged from 1.64 to 1.13 mg/g when the pH value varied from 4 to 10.However,the adsorption capacity of PACS was not evidently influenced by temperature.In comparison with the ion exchange resin,the adsorption capacity of PACS was barely inhibited by competitive ions,such as SO24,NO3,and Cl.The PACS surface after adsorption became smooth,and the vibration peaks of AleO and AleOH shifted.Both HCl and NaOH have a strong desorption effect on PACS after adsorption saturation,and with higher concentrations of HCl and NaOH,the desorption effect was stronger.Results of column adsorption experiments showed that with lower phosphorus and hydraulic loads,the adsorption column took longer to reach saturation.This indicated that PACS could be used as an efficient material for removal of phosphorus from water.This study provides a new treatment method with PACS.展开更多
γ-ray radiation-induced grafting strategy was first employed to immobilize 4-aminobenzo-15-crown-5 onto a covalent organic framework(COF).This endeavor culminated in the successful synthesis of a class of two-dimensi...γ-ray radiation-induced grafting strategy was first employed to immobilize 4-aminobenzo-15-crown-5 onto a covalent organic framework(COF).This endeavor culminated in the successful synthesis of a class of two-dimensional crown ether-modified COFs(named[15C5]n%-(TzDa-G-x%)),marking the maiden utilization of COFs in the realm of^(6)Li/^(7)Li isotope separation.These COFs exhibited swifter adsorption kinetics than alternative adsorbents.Among them,[15C5]_(57%)-(TzDa-G-50%)with its excellent crystallinity,porosity,and stability exhibited the best performance in Li+adsorption and^(6)Li/^(7)Li isotope separation.The Li+adsorption in acetonitrile achieved a capacity of 3.6 mg·g^(−1)within 30 min and a saturation capacity of 7.3 mg·g^(−1).The single-stage separation factor of^(6)Li/^(7)Li isotopes was 1.014±0.001.The results of dynamic adsorption column experiments showed that the packed column made of[15C5]_(57%)-(TzDa-G-50%)maintained stable performance during four cycles of Li+adsorptionelution,with over 99%Li+removal rate in acetonitrile.This crown ether-modified COF has potential application in^(6)Li/^(7)Li isotope separation,and this radiation-assisted synthesis strategy is expected to become universal in the modification of COFs for diverse applications.展开更多
Adsorption is one of the widely used processes in the chemical industry environmental application.As compared to mathematical models proposed to describe batch adsorption in terms of isotherm and kinetic behavior,insu...Adsorption is one of the widely used processes in the chemical industry environmental application.As compared to mathematical models proposed to describe batch adsorption in terms of isotherm and kinetic behavior,insufficient models are available to describe and predict fixed-bed or column adsorption,though the latter one is the main option in practical application.The present review first provides a brief summary on basic concepts and mathematic models to describe the mass transfer and isotherm behavior of batch adsorption,which dominate the column adsorption behavior in nature.Afterwards,the widely used models developed to predict the breakthrough curve,i.e.,the general rate models,linear driving force(LDF) model,wave propagation theory model,constant pattern model,Clark model,Thomas model,Bohart-Adams model,Yoon-Nelson model,Wang model,Wolborska model,and modified dose-response model,are briefly introduced from the mechanism and mathematical viewpoint.Their basic characteristics,including the advantages and inherit shortcomings,are also discussed.This review could help those interested in column adsorption to reasonably choose or develop an accurate and convenient model for their study and practical application.展开更多
The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore.In this work,the adsorption...The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore.In this work,the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically.The experimental results showed that the adsorption characteristics of La,Nd,Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731,1.587 and 0.971 mg/g,respectively.The free energy change(ΔG)values were –16.91 kJ/mol(La),–16.05 kJ/mol(Nd)and –15.58 kJ/mol(Y),respectively.The negative values of ΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process.The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here.With the increase of the ore body depth,the distribution of the LREEs decreased and the HREEs increased.And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process.These developed more evidences and better understanding of metallogenic regularity,and provided a theoretical basis and scientific approach to separation of the HREEs and LREEs in the leaching process.展开更多
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
文摘Organic dye pollutants present in wastewater pose a significant global challenge.Among pollutants,the synthetic dye Rhodamine B(RB)stands out due to its non-biodegradable nature and associated neurotoxic,carcinogenic,and respiratory irritant properties.Extensive research has been conducted on the efficacy of adsorption and photodegradation techniques for the removal of RB from wastewater.While adsorption and advanced oxidation processes(AOPs)have gained considerable attention for their effectiveness in recent years,the underlying behaviors and mechanisms of these technologies remain incompletely understood.Therefore,a comprehensive of recent research progress in this domain is imperative to clarify the basics and present the up-to-date achievements.This review provides an in-depth exploration of the fundamentals,advancements,and future trajectories of RB wastewater treatment technologies,mainly encompassing adsorption and photodegradation.This work starts with a general introduction of outlining the sources,toxicity,and diverse applicable removal strategies.Subsequently,it thoroughly examines crucial techniques within non-photochemical,photochemical,and adsorption technologies,such as UV light assisted AOP,catalyst assisted AOP,ozonation,Fenton system,electrochemical AOP,and adsorption technology.The primary objective is to furnish a broad overview of these techniques,elucidating their effectiveness,limitations,and applicability.Following this,the review encapsulates state-of-theart computational simulations pertaining to RB adsorption and interactions with clays and other adsorbents.Lastly,it delves into column adsorption of RB dye,and elucidates various influencing factors,including bed height,feed concentration,pollutant(RB)feeding or flow rate,and column regeneration.This panoramic review aims to provide valuable insights into suitable techniques,research gaps,and the applicability of nonphotochemical,photochemical,and adsorption technologies in the treatment of wastewater containing RB dye.
基金This work was supported by the Primary Research and Development Plan of Jiangsu Province(Grant No.BE2016703)the Natural Science Youth Fund of Jiangsu Province(Grant No.BK20171017)+1 种基金the National Natural Science Youth Fund of China(Grant No.51707093)the Science and Technology Program of the Ministry of Housing and Urban-Rural Development of China(Grant No.2014-K7-010).
文摘Phosphorus adsorption tests were carried out using poly-aluminum chloride sludge(PACS),which was collected from a water treatment plant in Nanjing.The amount of phosphorus adsorbed by PACS increased quickly within the first hour and reached equilibrium after about 48 h.The adsorption behavior of PACS for phosphorus is consistent with the Langmuir adsorption isotherm equation(R2>0.99)and parallel first-order kinetic equation(R2>0.98).With the increase of the PACS concentration,the adsorption capacity of PACS for phosphorus decreased,and the removal rate increased.The results of batch tests showed that the adsorption capacities of PACS for phosphorus ranged from 1.64 to 1.13 mg/g when the pH value varied from 4 to 10.However,the adsorption capacity of PACS was not evidently influenced by temperature.In comparison with the ion exchange resin,the adsorption capacity of PACS was barely inhibited by competitive ions,such as SO24,NO3,and Cl.The PACS surface after adsorption became smooth,and the vibration peaks of AleO and AleOH shifted.Both HCl and NaOH have a strong desorption effect on PACS after adsorption saturation,and with higher concentrations of HCl and NaOH,the desorption effect was stronger.Results of column adsorption experiments showed that with lower phosphorus and hydraulic loads,the adsorption column took longer to reach saturation.This indicated that PACS could be used as an efficient material for removal of phosphorus from water.This study provides a new treatment method with PACS.
基金the National Natural Science Foundation of China(grant no.U2067212)the National Science Fund for Distinguished Young Scholars(grant no.21925603).
文摘γ-ray radiation-induced grafting strategy was first employed to immobilize 4-aminobenzo-15-crown-5 onto a covalent organic framework(COF).This endeavor culminated in the successful synthesis of a class of two-dimensional crown ether-modified COFs(named[15C5]n%-(TzDa-G-x%)),marking the maiden utilization of COFs in the realm of^(6)Li/^(7)Li isotope separation.These COFs exhibited swifter adsorption kinetics than alternative adsorbents.Among them,[15C5]_(57%)-(TzDa-G-50%)with its excellent crystallinity,porosity,and stability exhibited the best performance in Li+adsorption and^(6)Li/^(7)Li isotope separation.The Li+adsorption in acetonitrile achieved a capacity of 3.6 mg·g^(−1)within 30 min and a saturation capacity of 7.3 mg·g^(−1).The single-stage separation factor of^(6)Li/^(7)Li isotopes was 1.014±0.001.The results of dynamic adsorption column experiments showed that the packed column made of[15C5]_(57%)-(TzDa-G-50%)maintained stable performance during four cycles of Li+adsorptionelution,with over 99%Li+removal rate in acetonitrile.This crown ether-modified COF has potential application in^(6)Li/^(7)Li isotope separation,and this radiation-assisted synthesis strategy is expected to become universal in the modification of COFs for diverse applications.
基金Project supported by the National Natural Science Foundation of China (No. 21177059)the Science Foundation of Ministry of Education of China (No. 20120091130005)+2 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2012017)the Program for New Century Excellent Talents in University of China (No. NCET10-0490)the Changjiang Scholars Innovative Research Team in University (No. IRT1019),China
文摘Adsorption is one of the widely used processes in the chemical industry environmental application.As compared to mathematical models proposed to describe batch adsorption in terms of isotherm and kinetic behavior,insufficient models are available to describe and predict fixed-bed or column adsorption,though the latter one is the main option in practical application.The present review first provides a brief summary on basic concepts and mathematic models to describe the mass transfer and isotherm behavior of batch adsorption,which dominate the column adsorption behavior in nature.Afterwards,the widely used models developed to predict the breakthrough curve,i.e.,the general rate models,linear driving force(LDF) model,wave propagation theory model,constant pattern model,Clark model,Thomas model,Bohart-Adams model,Yoon-Nelson model,Wang model,Wolborska model,and modified dose-response model,are briefly introduced from the mechanism and mathematical viewpoint.Their basic characteristics,including the advantages and inherit shortcomings,are also discussed.This review could help those interested in column adsorption to reasonably choose or develop an accurate and convenient model for their study and practical application.
基金Project supported by National Science and Technology Support Program of China(2015BAB16B01)Training Program of Major Academic and Technical Leaders in Jiangxi Province(20142BCB22005)Top Youth Talent Training Program of"Gan Po 555 Talents Project"of Jiangxi Province
文摘The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore.In this work,the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically.The experimental results showed that the adsorption characteristics of La,Nd,Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731,1.587 and 0.971 mg/g,respectively.The free energy change(ΔG)values were –16.91 kJ/mol(La),–16.05 kJ/mol(Nd)and –15.58 kJ/mol(Y),respectively.The negative values of ΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process.The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here.With the increase of the ore body depth,the distribution of the LREEs decreased and the HREEs increased.And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process.These developed more evidences and better understanding of metallogenic regularity,and provided a theoretical basis and scientific approach to separation of the HREEs and LREEs in the leaching process.