Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of Ch...To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.展开更多
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the pa...To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.展开更多
This research proposes a modified two-dimensional Peng-Robinson equation model to predict adsorption isotherm in adsorbate-adsorbent systems. The parameters of the proposed model are calculated by using the optimizati...This research proposes a modified two-dimensional Peng-Robinson equation model to predict adsorption isotherm in adsorbate-adsorbent systems. The parameters of the proposed model are calculated by using the optimization of experimental data for the different single gas adsorption systems at various temperatures. The experimental adsorption equilibrium data of adsorbate-adsorbent systems was compared with the calculated results in our proposed model and the two-dimensional Hill-deBoer equation model. The proposed model as indicated in the results shows a better prediction of the experimental results compared with two others.展开更多
Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at consta...Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results.展开更多
Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosi...Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples.展开更多
Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and ...Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.展开更多
Adsorption of FCC dry gas components, hydrogen(H_2), nitrogen(N_2), methane(CH_4), ethane(C_2H_6) and ethylene(C_2H_4) in zeolite Y was studied by performing the Grant Canonical Monte Carlo(GCMC) simulations at 298K a...Adsorption of FCC dry gas components, hydrogen(H_2), nitrogen(N_2), methane(CH_4), ethane(C_2H_6) and ethylene(C_2H_4) in zeolite Y was studied by performing the Grant Canonical Monte Carlo(GCMC) simulations at 298K and 823K and under a pressure range up to 10 MPa. Simulation results were analyzed using the Langmuir model, which presented fitting of dry gas components adsorption to be suggested as the monolayer adsorption. C_2H_4 presented most single adsorption amount, which reached 7.63 mol/kg at 298K under a pressure of 200kPa. Thermodynamic parameters of the Gibbs free energy change, enthalpy change and entropy change were analyzed based on adsorption equilibrium constant obtained from the GCMC simulations. The results suggested that it was more favorable for C_2H_4 to be adsorbed in zeolite Y. Adsorption molecules were in ordered arrangement in the zeolite, and C_2H_4 exhibited a more orderly arrangement than other components. Additionally, a competition in the adsorption of a mixture of dry gas components was found, and supercages were the priority adsorption space. The competition was favorable to CH_4 and C_2H_6, and the competitive power was affected by temperature.展开更多
The reaction of Cd(NO_3)_2·4H_2O with 4,4?-dipyridylacetylene(4,4?-DPA) and 2-nitroterephthalic acid(2-NO_2-H_2BDC) in DMF/H_2O mixed solvent has afforded a compound {[Cd(2-NO_2-BDC)(4,4?-DPA)]·...The reaction of Cd(NO_3)_2·4H_2O with 4,4?-dipyridylacetylene(4,4?-DPA) and 2-nitroterephthalic acid(2-NO_2-H_2BDC) in DMF/H_2O mixed solvent has afforded a compound {[Cd(2-NO_2-BDC)(4,4?-DPA)]·(DMF)}_n(1). Compound 1 has been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetry analysis, and IR spectrum. Compound 1 crystallizes in the monoclinic system, space group P21/n, with a = 12.1488(3), b = 14.6689(3), c = 13.1615(3) ?, β = 111.809(3)o, V = 2177.63(9) ?~3, Z = 4, C_(23)H_(18)N_4O_7 Cd, M_r = 574.81, D_c = 1.753 g/cm^3, μ = 8.523 mm^(-1), F(000) = 1152, the final R = 0.0411 and wR = 0.1064 for 3589 observed reflections with I 〉 2s(I). In compound 1, the Cd(Ⅱ) ions are linked by the carboxylate groups of 2-NO_2-BDC ligands to give a two-dimensional layered structure based on the centrosymmetric dinuclear Cd_2(COO)_2 units, which are further connected by the 4,4?-DPA ligands to produce a three-dimensional framework with pcu topology. Careful examination revealed that compound 1 is a 2-fold interpenetrating framework. Furthermore, the gas adsorption properties of 1 for N_2 and CO_2 have also been investigated.展开更多
Zeolitic imidazolate framework-8(ZIF-8) was prepared through a solve-thermal reaction method and then shaped using different additives. The in fluence of the shaping conditions on the microstructure of the shaped samp...Zeolitic imidazolate framework-8(ZIF-8) was prepared through a solve-thermal reaction method and then shaped using different additives. The in fluence of the shaping conditions on the microstructure of the shaped samples was characterized by the XRD, BET, and SEM techniques. The results demonstrate that the compressive strength of the various shaped tablets is greatly increased and capable of meeting the industrial requirements compared to the unshaped ZIF-8 and that the loss rate of speci fic surface areas was maintained at 10% after the addition of 10%(by mass) binder and 10%(by mass) solvent. The adsorption isotherms of CO2, CH4, C3H8, and C3H6 on powdery ZIF-8and the shaped tablets(T-shaped ZIF-8, C-shaped ZIF-8, and N-shaped ZIF-8) were determined through volumetric measurements under different pressures and temperatures(298.2, 323.2, and 348.2 K). The adsorption capacities of the gases on both the ZIF-8 powder and the shaped tablets follow the order C3H6 N C3H8N CO2 N CH4. Furthermore,the results show that the adsorption capacities of the gases on the shaped tablets are lower by approximately 10%–20% than those on the powdery ZIF-8. In fact, the adsorption equilibrium isotherms for CO2, CH4, C3H8, and C3H6 on both powdery and shaped ZIF-8 can be well described by the Langmuir equation.展开更多
We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functi...We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory. The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies. The main factor affecting adsorption stability and energy is the polarizability of molecules, and adsorption is induced by surface oxygen vacancies of the negatively charged center. The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N, 0 and C. Moreover, the adsorption method is chemical adsorption, and adsorption stability decreases in the order of NH3, tt2 0 and CH4. Analyses of absorption and reflectance spectra reveal that after absorbed CH4 and H2 O, compared with the surface with oxygen vacancy, the optical properties of materials surface, including its absorption coefficients and reflectivity index, have slight changes, however, absorption coefficient and reflectivity would greatly increase after NH3 adsorption. These findings illustrate that anatase titanium dioxide (101) surface is extremely sensitive to NH3.展开更多
The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigat...The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigated in this work.To account for the particle distribution,we propose a BET theory based on multilayer O_(2)physisorption model.Furthermore,based on the phenomenological model of secondary electron(SE)emission and by taking into account the different scattering processes between electrons and particles in the adsorbed layer,we develop a numerical model of SEY in the adsorbed state using Monte Carlo simulations.The relationships among O_(2)adsorption,adsorption layer thickness,and SEY variation characteristics are then examined through a series of experiments.After 12-h exposure to O_(2),the clean samples increases12%-19%of the maximum value of SEY and 2.3 nm in thickness of the adsorbed layer.Experimental results are also compared with the results from the MC model to determine whether the model is accurate.展开更多
Coal seam CO_(2) sequestration is an important option to address global warming.A better knowledge on coal pore structure evolution during gas adsorption can provide guidance for coal seams CO_(2) seques-tration.Howev...Coal seam CO_(2) sequestration is an important option to address global warming.A better knowledge on coal pore structure evolution during gas adsorption can provide guidance for coal seams CO_(2) seques-tration.However,few investigations on the pore structure evolution differences between the deep and shallow coal were conducted during gas adsorption.In this study,based on the real-time synchrotron radiation small-angle X-ray scattering(SAXS)observation,the average pore diameter and pore surface fractal dimension evolution differences between deep and shallow coal were investigated from the as-pects of coal compositions and stress history.Two types of coal deformation(inner-swelling and outer-swelling)coexist during gas adsorption.Coal compositions have significant impact on the dominance of deformation type.The dominance of inner-swelling in deep coal is induced by the higher ash contents,and there is the decrease of average pore diameter during gas adsorption.The impact of stress-history(burial depth)on adsorption-induced deformation is more prominent than that of gas adsorption ca-pacity.In deep coal,the surface fractal dimension evolution presents a negative correlation with the evolution of pore diameters.In shallow coal,the surface fractal dimension evolution presents a Langmuir-type correlation with the adsorption time.展开更多
According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary...According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.展开更多
Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equatio...Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equation has been fuzzily considered and the mechanism of interaction for coal aromatics and methane gas molecules has not been understood. Then these problems have been discussed in this paper applied the principle of statistical thermo mechanics and quantum chemistry as well as based on the numerical calculating of experiential data in quantum chemistry. Therefore, it is revealed by research results that the experience state equation for real methane gas in coal, which is put forward in this paper, is closer to actual situation and the interaction process for methane gas adsorption on the surface of coal aromatics can be formulated by Morse potential function. Furthermore it is most stable through this research that the structural mould for methane gas molecule adsorption on the surface of coal nuclear with one gas molecule on top of another aromatics in regular triangle cone has been understood, and it is a physical adsorption for methane gas adsorption with single layer molecule on the surface of coal nuclear.展开更多
Covalent organic framework (COF) is a porous material with low density and large BET (Brtmauer-Emmett-Teller) surface area. They have great potential in gas adsorption and separation. In this work, the adsorption ...Covalent organic framework (COF) is a porous material with low density and large BET (Brtmauer-Emmett-Teller) surface area. They have great potential in gas adsorption and separation. In this work, the adsorption of pure CO2 and CO2/CH4 mixture on modified COF-102 was simulated by using GCMC (grand canonical Monte Carlo). Metal Li was incorporated into COF-102 through three doping methods, including charge exchange, O^--Li6+ dipolar interaction and O^--Li^+ chemical bonding. The influence of Li doping on the adsorption of CO2 was studied. The results showed that among the three methods, the dipole doping is the best way to improve CO2 adsorption performance. Further, the ligands of COF-102 were replaced by extended aromatic moieties, such as diphenyl and pyrene. The adsorption capacity of CO2 and CH4, and the selectivity of CO2/CH4 on the ligand-replaced COF-102 were studied. The capacity of CO2 and CH4 on the ligand-replaced COF-102 had obvious changes; hence the selectivity of CO2/CH4 can be adjusted accordingly.展开更多
In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we inve...In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we investigated the preferential adsorption of CH4 and CO2 on coals. Adsorption of pure CO2, CH4 and their binary mixtures on high-rank coals from Qinshui Basin in China were employed to study the preferential adsorption behaviour. Multiple regression equations were presented to predict CH4 equi- librium concentration from equilibrium pressure and its initial-composition in feed gas. The results show that preferential adsorption of CO2 on coals over the entire pressure range under competitive sorption conditions was observed, however, preferential adsorption of CH4 over CO2 on low-volatile bituminous coal from higher CH4-compostion in source gas was found at up to 1O MPa pressure. Preferential adsorp- tion of CO2 increases with increase of CH4 concentration in source gas, and decreases with increasing pressure. Although there was no systematic investigation of the effect of coal rank on preferential adsorp- tion, there are obvious differences in preferential adsorption of gas between low-volatile bituminous coal and anthracite. The obtained preferential adsorption gives rise to the assumption that CO2 sequestration in coal beds with subsequent CO2-ECBM might be an ootion in Qinshui Basins, China.展开更多
Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid c...Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid coal. Especially for enhanced coal bed methane(ECBM) and CO2 capture and sequestration(CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability.Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases(including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery(still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal deformation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection,during which the pore pressure in the cleats will rapidly increase, in contrast, the pore pressure in the matrix will hysteretically elevate. Such a difference on changes of pore pressure between the cleats and the matrix will contribute to the shrinkage of the matrix as a result of initially greater effective stress.Besides, both gas-adsorption-induced swelling and decreasing effective stress also control the coal deformation transition. This work gives us an insight into investigation on influence of effective stress on coal-gas interaction.展开更多
Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-in...Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-induced disasters occurred in those coal mines suffering from heat hazard.In this work,coal samples,obtained from the No.2442 working face of Baijiao Coal Mine,were subjected to uniaxial compression ranging from 20 to 40℃ with an interval of 5℃.The apparatus used was designed to obtain deformation of a stressed sample,as well as the emission of gases desorbing from coal matrix.The adsorbed gas desorption caused by heating is measured during the entire testing.It is evident that the concentrations of releasing gas(containing methane,carbon dioxide and ethane)slightly rise with increasing temperature.Gas movement observed is closely related to the deformation of coal sample.Both uniaxial compressive strength and elastic modulus of coal samples tend to reduce with temperature.It reveals that increasing temperature can not only result in thermal expansion of coal,but also lead to desorption of preexisting gas in coal which can in turns harden coal due to shrinks of the coal matrix.Even though desorption of adsorbed gas can contribute to the hardening effect for the heated coal,by comparison to the results,it could be inferred that the softening of coal resulted from thermal expansion still predominates changes in mechanical characters of coal sample with temperature at the range from20 to 40℃.展开更多
A new complex, [Cu(HL)(phen)(H2O)]·4H2O(1, H3L·HCl = 5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, phen = 1,10-phenanthroline), has been hydrothermally prepared and character...A new complex, [Cu(HL)(phen)(H2O)]·4H2O(1, H3L·HCl = 5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, phen = 1,10-phenanthroline), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with a = 14.5520(14), b = 12.6659(12), c = 15.5006(14) A, β = 97.224(2)o, V = 2834.3(5) A3, Z = 4, C27H33N3O11 Cu, Mr = 639.10, Dc = 1.498 g/cm3, μ = 0.837 mm-1, S = 1.047, F(000) = 1332, the final R = 0.0423 and w R = 0.1118 for 18772 observed reflections(I 〉 2σ(I)). The compound is a Cu(Ⅱ) centre mononuclear molecule in the asymmetric unit. The independent binuclear [Cu2(HL)2(phen)2] units are bridged to form a three-dimensional(3D) supramolecular polymer by extensive hydrogen bonds and π-π non-covalent bonding interactions. Moreover, thermogravimetric(TG) analysis and gas adsorption property of 1 were also discussed.展开更多
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金provided by the Fundamental Research Funds for the Universities of Henan Province of China(No.NSFRF140105)the 2015 Key Research Program of Higher Education Institution in Henan Department of Education of China(No.15A440007)+4 种基金the Henan Polytechnic University Doctoral Fund Project(No.B2014-004)the 2016 Foundation and Advanced Technology Research Project of Henan Province(No.162300410038)the 2014 Provincial University Training Program Under the National-Level Undergraduate Training Program in Innovation and Entrepreneurship of China(No.201410460036)the National Natural Science Foundation of China(No.51274090)the State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University-China)(No.WS2012B01)
文摘To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.51327007,51104118 and51204134)Shaanxi Province Youth Science and Technology Star Project of China(2014KJXX69)
文摘To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.
文摘This research proposes a modified two-dimensional Peng-Robinson equation model to predict adsorption isotherm in adsorbate-adsorbent systems. The parameters of the proposed model are calculated by using the optimization of experimental data for the different single gas adsorption systems at various temperatures. The experimental adsorption equilibrium data of adsorbate-adsorbent systems was compared with the calculated results in our proposed model and the two-dimensional Hill-deBoer equation model. The proposed model as indicated in the results shows a better prediction of the experimental results compared with two others.
基金financially supported by the Natural Science Foundation for the Youth of China (No. 41202118)the Fundamental Research Funds for the Central Universities (No.2012QNB03)
文摘Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results.
基金Supported by the National Sci-Tech Support Plan(2015BAD21B05)China Scholarship Council(201408320127)
文摘Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples.
文摘Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.
基金financial support from the National Natural Science Foundation of China (No. 41302101 and No. 21476263)
文摘Adsorption of FCC dry gas components, hydrogen(H_2), nitrogen(N_2), methane(CH_4), ethane(C_2H_6) and ethylene(C_2H_4) in zeolite Y was studied by performing the Grant Canonical Monte Carlo(GCMC) simulations at 298K and 823K and under a pressure range up to 10 MPa. Simulation results were analyzed using the Langmuir model, which presented fitting of dry gas components adsorption to be suggested as the monolayer adsorption. C_2H_4 presented most single adsorption amount, which reached 7.63 mol/kg at 298K under a pressure of 200kPa. Thermodynamic parameters of the Gibbs free energy change, enthalpy change and entropy change were analyzed based on adsorption equilibrium constant obtained from the GCMC simulations. The results suggested that it was more favorable for C_2H_4 to be adsorbed in zeolite Y. Adsorption molecules were in ordered arrangement in the zeolite, and C_2H_4 exhibited a more orderly arrangement than other components. Additionally, a competition in the adsorption of a mixture of dry gas components was found, and supercages were the priority adsorption space. The competition was favorable to CH_4 and C_2H_6, and the competitive power was affected by temperature.
基金Supported by the National Natural Science Foundation of China(No.21361011 and 21101081)the Natural Science Foundation of Jiangxi Province(No.20151BAB203002)
文摘The reaction of Cd(NO_3)_2·4H_2O with 4,4?-dipyridylacetylene(4,4?-DPA) and 2-nitroterephthalic acid(2-NO_2-H_2BDC) in DMF/H_2O mixed solvent has afforded a compound {[Cd(2-NO_2-BDC)(4,4?-DPA)]·(DMF)}_n(1). Compound 1 has been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetry analysis, and IR spectrum. Compound 1 crystallizes in the monoclinic system, space group P21/n, with a = 12.1488(3), b = 14.6689(3), c = 13.1615(3) ?, β = 111.809(3)o, V = 2177.63(9) ?~3, Z = 4, C_(23)H_(18)N_4O_7 Cd, M_r = 574.81, D_c = 1.753 g/cm^3, μ = 8.523 mm^(-1), F(000) = 1152, the final R = 0.0411 and wR = 0.1064 for 3589 observed reflections with I 〉 2s(I). In compound 1, the Cd(Ⅱ) ions are linked by the carboxylate groups of 2-NO_2-BDC ligands to give a two-dimensional layered structure based on the centrosymmetric dinuclear Cd_2(COO)_2 units, which are further connected by the 4,4?-DPA ligands to produce a three-dimensional framework with pcu topology. Careful examination revealed that compound 1 is a 2-fold interpenetrating framework. Furthermore, the gas adsorption properties of 1 for N_2 and CO_2 have also been investigated.
基金Supported by the National Natural Science Foundation of China(21176010,21476009,21406007,and U1462104)
文摘Zeolitic imidazolate framework-8(ZIF-8) was prepared through a solve-thermal reaction method and then shaped using different additives. The in fluence of the shaping conditions on the microstructure of the shaped samples was characterized by the XRD, BET, and SEM techniques. The results demonstrate that the compressive strength of the various shaped tablets is greatly increased and capable of meeting the industrial requirements compared to the unshaped ZIF-8 and that the loss rate of speci fic surface areas was maintained at 10% after the addition of 10%(by mass) binder and 10%(by mass) solvent. The adsorption isotherms of CO2, CH4, C3H8, and C3H6 on powdery ZIF-8and the shaped tablets(T-shaped ZIF-8, C-shaped ZIF-8, and N-shaped ZIF-8) were determined through volumetric measurements under different pressures and temperatures(298.2, 323.2, and 348.2 K). The adsorption capacities of the gases on both the ZIF-8 powder and the shaped tablets follow the order C3H6 N C3H8N CO2 N CH4. Furthermore,the results show that the adsorption capacities of the gases on the shaped tablets are lower by approximately 10%–20% than those on the powdery ZIF-8. In fact, the adsorption equilibrium isotherms for CO2, CH4, C3H8, and C3H6 on both powdery and shaped ZIF-8 can be well described by the Langmuir equation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274128 and 61106129the Natural Science Foundation of Chongqing under Grant No CSTC2013JCYJA0731the Scientific Talent Training Foundation of Chongqing under Grant No CSTC2013KJRC-QNRC0080
文摘We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory. The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies. The main factor affecting adsorption stability and energy is the polarizability of molecules, and adsorption is induced by surface oxygen vacancies of the negatively charged center. The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N, 0 and C. Moreover, the adsorption method is chemical adsorption, and adsorption stability decreases in the order of NH3, tt2 0 and CH4. Analyses of absorption and reflectance spectra reveal that after absorbed CH4 and H2 O, compared with the surface with oxygen vacancy, the optical properties of materials surface, including its absorption coefficients and reflectivity index, have slight changes, however, absorption coefficient and reflectivity would greatly increase after NH3 adsorption. These findings illustrate that anatase titanium dioxide (101) surface is extremely sensitive to NH3.
基金Project supported by the Fund from the National Key Laboratory of Science and Technology on Space Mircrowave,China(Grant No.6142411112205)the National Natural Science Foundation of China(Grant No.62001376)。
文摘The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigated in this work.To account for the particle distribution,we propose a BET theory based on multilayer O_(2)physisorption model.Furthermore,based on the phenomenological model of secondary electron(SE)emission and by taking into account the different scattering processes between electrons and particles in the adsorbed layer,we develop a numerical model of SEY in the adsorbed state using Monte Carlo simulations.The relationships among O_(2)adsorption,adsorption layer thickness,and SEY variation characteristics are then examined through a series of experiments.After 12-h exposure to O_(2),the clean samples increases12%-19%of the maximum value of SEY and 2.3 nm in thickness of the adsorbed layer.Experimental results are also compared with the results from the MC model to determine whether the model is accurate.
基金supported by the National Natural Science Foundation of China (grant Nos.U1910206,52004293,52225402)Beijing Natural Science Foundation (grant No.8232057)+4 种基金the Open Project Program of State Key Laboratory of Coal and CBM Co-mining (grant No.2022KF21)Fundamental Research Funds for the Central Universities (grant No.FRF-TP-20-034A1)the Open Project Program of Key Laboratory of Deep Earth Science and Engineering (Sichuan University)Ministry of Education (grant No.DESE 202004)China Postdoctoral Science Foundation (grant No.2018M641526).
文摘Coal seam CO_(2) sequestration is an important option to address global warming.A better knowledge on coal pore structure evolution during gas adsorption can provide guidance for coal seams CO_(2) seques-tration.However,few investigations on the pore structure evolution differences between the deep and shallow coal were conducted during gas adsorption.In this study,based on the real-time synchrotron radiation small-angle X-ray scattering(SAXS)observation,the average pore diameter and pore surface fractal dimension evolution differences between deep and shallow coal were investigated from the as-pects of coal compositions and stress history.Two types of coal deformation(inner-swelling and outer-swelling)coexist during gas adsorption.Coal compositions have significant impact on the dominance of deformation type.The dominance of inner-swelling in deep coal is induced by the higher ash contents,and there is the decrease of average pore diameter during gas adsorption.The impact of stress-history(burial depth)on adsorption-induced deformation is more prominent than that of gas adsorption ca-pacity.In deep coal,the surface fractal dimension evolution presents a negative correlation with the evolution of pore diameters.In shallow coal,the surface fractal dimension evolution presents a Langmuir-type correlation with the adsorption time.
基金Acknowledgments This work is supported by the National Key Basic Research Program of China (2013CB227903) and the National Natural Science Foundation of China (U1361209).
文摘According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.
文摘Although two moulds for methane gas in coal with the free state and adsorption state have been popularly considered, the derivation between the real methane gas state equation in coal and the perfect gas state equation has been fuzzily considered and the mechanism of interaction for coal aromatics and methane gas molecules has not been understood. Then these problems have been discussed in this paper applied the principle of statistical thermo mechanics and quantum chemistry as well as based on the numerical calculating of experiential data in quantum chemistry. Therefore, it is revealed by research results that the experience state equation for real methane gas in coal, which is put forward in this paper, is closer to actual situation and the interaction process for methane gas adsorption on the surface of coal aromatics can be formulated by Morse potential function. Furthermore it is most stable through this research that the structural mould for methane gas molecule adsorption on the surface of coal nuclear with one gas molecule on top of another aromatics in regular triangle cone has been understood, and it is a physical adsorption for methane gas adsorption with single layer molecule on the surface of coal nuclear.
基金Supported by the National Natural Science Foundation of China (20736002), the National High Technology Research and Development Program of China (2008AA062302) and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0721).
文摘Covalent organic framework (COF) is a porous material with low density and large BET (Brtmauer-Emmett-Teller) surface area. They have great potential in gas adsorption and separation. In this work, the adsorption of pure CO2 and CO2/CH4 mixture on modified COF-102 was simulated by using GCMC (grand canonical Monte Carlo). Metal Li was incorporated into COF-102 through three doping methods, including charge exchange, O^--Li6+ dipolar interaction and O^--Li^+ chemical bonding. The influence of Li doping on the adsorption of CO2 was studied. The results showed that among the three methods, the dipole doping is the best way to improve CO2 adsorption performance. Further, the ligands of COF-102 were replaced by extended aromatic moieties, such as diphenyl and pyrene. The adsorption capacity of CO2 and CH4, and the selectivity of CO2/CH4 on the ligand-replaced COF-102 were studied. The capacity of CO2 and CH4 on the ligand-replaced COF-102 had obvious changes; hence the selectivity of CO2/CH4 can be adjusted accordingly.
基金supported by the National Natural Science Foundation of China(Nos.51174127 and 21176145)the Natural Science Foundation of Shandong Province(No.ZR2011DM005)the Open Research Fund Program of Key Laboratory of Mine Disaster Prevention and Control(Shandong University of Science and Technology)(No.MDPC0806)
文摘In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we investigated the preferential adsorption of CH4 and CO2 on coals. Adsorption of pure CO2, CH4 and their binary mixtures on high-rank coals from Qinshui Basin in China were employed to study the preferential adsorption behaviour. Multiple regression equations were presented to predict CH4 equi- librium concentration from equilibrium pressure and its initial-composition in feed gas. The results show that preferential adsorption of CO2 on coals over the entire pressure range under competitive sorption conditions was observed, however, preferential adsorption of CH4 over CO2 on low-volatile bituminous coal from higher CH4-compostion in source gas was found at up to 1O MPa pressure. Preferential adsorp- tion of CO2 increases with increase of CH4 concentration in source gas, and decreases with increasing pressure. Although there was no systematic investigation of the effect of coal rank on preferential adsorp- tion, there are obvious differences in preferential adsorption of gas between low-volatile bituminous coal and anthracite. The obtained preferential adsorption gives rise to the assumption that CO2 sequestration in coal beds with subsequent CO2-ECBM might be an ootion in Qinshui Basins, China.
基金founded by the National Natural Science Foundation of China(Nos.41202194,41172116,and2013M542097)the Natural Science Foundation of Shandong Province,China(No.ZR2012EEQ021)+1 种基金‘‘Leading Talent Plan’’ of Shandong University of Science and Technology,Chinaresearch groups for ‘‘Taishan Scholar’’ and ‘‘Controlon Instability of Deep Surrounding Rocks’’ of SDUST
文摘Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid coal. Especially for enhanced coal bed methane(ECBM) and CO2 capture and sequestration(CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability.Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases(including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery(still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal deformation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection,during which the pore pressure in the cleats will rapidly increase, in contrast, the pore pressure in the matrix will hysteretically elevate. Such a difference on changes of pore pressure between the cleats and the matrix will contribute to the shrinkage of the matrix as a result of initially greater effective stress.Besides, both gas-adsorption-induced swelling and decreasing effective stress also control the coal deformation transition. This work gives us an insight into investigation on influence of effective stress on coal-gas interaction.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.41202194,41172116 and 51074099)the Natural Science Foundation of Shandong Province(No.ZR2012EEQ021)are gratefully acknowledged
文摘Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-induced disasters occurred in those coal mines suffering from heat hazard.In this work,coal samples,obtained from the No.2442 working face of Baijiao Coal Mine,were subjected to uniaxial compression ranging from 20 to 40℃ with an interval of 5℃.The apparatus used was designed to obtain deformation of a stressed sample,as well as the emission of gases desorbing from coal matrix.The adsorbed gas desorption caused by heating is measured during the entire testing.It is evident that the concentrations of releasing gas(containing methane,carbon dioxide and ethane)slightly rise with increasing temperature.Gas movement observed is closely related to the deformation of coal sample.Both uniaxial compressive strength and elastic modulus of coal samples tend to reduce with temperature.It reveals that increasing temperature can not only result in thermal expansion of coal,but also lead to desorption of preexisting gas in coal which can in turns harden coal due to shrinks of the coal matrix.Even though desorption of adsorbed gas can contribute to the hardening effect for the heated coal,by comparison to the results,it could be inferred that the softening of coal resulted from thermal expansion still predominates changes in mechanical characters of coal sample with temperature at the range from20 to 40℃.
基金Supported by the National Natural Science Foundation of China(No.21171040)National Undergraduates Innovation Project(201510371010)
文摘A new complex, [Cu(HL)(phen)(H2O)]·4H2O(1, H3L·HCl = 5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, phen = 1,10-phenanthroline), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with a = 14.5520(14), b = 12.6659(12), c = 15.5006(14) A, β = 97.224(2)o, V = 2834.3(5) A3, Z = 4, C27H33N3O11 Cu, Mr = 639.10, Dc = 1.498 g/cm3, μ = 0.837 mm-1, S = 1.047, F(000) = 1332, the final R = 0.0423 and w R = 0.1118 for 18772 observed reflections(I 〉 2σ(I)). The compound is a Cu(Ⅱ) centre mononuclear molecule in the asymmetric unit. The independent binuclear [Cu2(HL)2(phen)2] units are bridged to form a three-dimensional(3D) supramolecular polymer by extensive hydrogen bonds and π-π non-covalent bonding interactions. Moreover, thermogravimetric(TG) analysis and gas adsorption property of 1 were also discussed.