A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by consideri...A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.展开更多
Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No....Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressure and saturated vapor pressure,which indicates that molecular layer adsorption or micropore filling may occur in coal.No clear equilibrium state was observed on the isothermal adsorption curves under relative pressure(P /P0 ) ranging from 0 to 0.8.The fitted results show that the accuracy of the D-A equation is highest with n=1.Micropores are more developed in coal by comparing the BET equation with a pressure mercury injection method on the surface area.The D-A equation(n=1) provides the best fit.By comparing the calculated specific surface area of the BET equation and the mercury intrusion method,it is found that micropore adsorption of CO2 occupies a dominant position.展开更多
Ammonium adsorption and desorption properties by purple soils with dif- ferent pH were studied. The results showed that the adsorption and desorption amounts of NH4+ by purple soils increased with the increase of NH4...Ammonium adsorption and desorption properties by purple soils with dif- ferent pH were studied. The results showed that the adsorption and desorption amounts of NH4+ by purple soils increased with the increase of NH4+ concentration, regardless of soil pH values; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 6.0 were 10.3 and 7.96 mg/g, respectively; the largest adsorp- tion and desorption amounts of NH4+ by purple soil at pH 7.2 were 12.8 and 4.62 mg/g, respectively; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 8.0 were 13.5 and 2.23 mg/g, respectively. The isothermal adsorption ki- netics of NH4+ by purple soils fits the Freundlich equation best (R〉0.95). This study shows that the adsorption of NH4+ by purple soils with different pH values is multi- molecular layer uneven surface adsorption.展开更多
A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye sol...A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.展开更多
Batch adsorption from aqueous solutions in a slightly basic medium of Methylene Blue, up to 2500 mg/L, onto synthetic magnesium silicate (Florisil) of three particle size ranges (mean diameters of 112, 200 and 425 ...Batch adsorption from aqueous solutions in a slightly basic medium of Methylene Blue, up to 2500 mg/L, onto synthetic magnesium silicate (Florisil) of three particle size ranges (mean diameters of 112, 200 and 425 μm) was compared to the corresponding adsorption onto activated carbon and Amberlite XAD-2. The best fit of the kinetic results was achieved by a pseudo second-order equation. The equilibrium data were found to be well represented by the Langmuir isotherm equation. Amberlite XAD-2, an unspecific adsorbent capable of adsorbing exclusively through a surface effect, exhibited a poor dye uptake, confirming that the adsorption mechanism on Florisil was due to electrostatic attraction and ion exchange. Moreover, the comparison between Florisil and the other adsorbents was performed on the basis of the evaluation of the surface area and pore volume occupied by the adsorbed dye.展开更多
Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibriu...Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was deter...展开更多
The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 n...The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 nanoparticles were then immobilized on ordinary sand for adsorption studies. Adsorption isotherms were conducted on the synthesized nanoparticles as well as the sand coated with TiO2 nanoparticles under varying conditions of air and light, namely, the air-sunlight (A-SL), air-light (AL), air-dark (AD) and nitrogen-dark (ND). X-ray diffraction (XRD) analysis showed that the pure and iron-doped TiO2 nanoparticles were in 100% anatase crystalline phase with crystai sizes of 108 and 65 nm, respectively. Adsorption of arsenic on the three adsorbents was non-linear that could be described by the Freundlich and Langmuir adsorption models. Iron doping enhanced the adsorption capacity of TiO2 nanoparticles by arresting the grain growth and making it visible light responsive resulting in a higher affinity for arsenic. Similarly, the arsenic removal by adsorption on the sand coated with TiO2 nanoparticles was the highest among the three types of sand used. In all cases, As(V) was adsorbed more compared with As(Ⅲ). The solution pH appeared to be the most important factor in controlling the amount of arsenic adsorbed.展开更多
Azo dyes have received considerable attention because of their association with various human health problems. The aim of the investigation is to determine the adsorption behavior ofazo dyes in aqueous solution on DG0...Azo dyes have received considerable attention because of their association with various human health problems. The aim of the investigation is to determine the adsorption behavior ofazo dyes in aqueous solution on DG06, GSE17200, and GSE17201 soils using C. I. Acid Red 14 (AR14) as example. The experimental results indicate that the Freundlich model expresses the adsorption isotherm better than the Langmuir model and the pseudo-second-order model achieves adsorption of AR14 on the three soils well. Based on the pseudo-second-order model, the adsorption thermodynamic of AR14 on DG06 soil have been studied and the thermodynamics parameter of AGO is determined and AGO value shows the adsorption process of AR14 on DG06 is mainly physical in nature. Furthermore, the effects of temperature, pH and salinity (NaC1) on adsorption have been investigated. The decrease in pH or the increase in salinity enhances the adsorption of AR14 by DG06, GSE17200, and GSE17201.展开更多
The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.P...The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.展开更多
Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated. Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent. The kinetics of adsorptio...Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated. Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent. The kinetics of adsorption process data was examined using the pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models. The rate constants of adsorption for all these kinetics models were calculated and compared. The adsorption kinetics was best described by the pseudo second-order model. The Langmuir and Freundlich adsorption isotherm models were applied to the experimental equilibrium data at different temperatures. The experimental data well fitted to Langmuir isotherm model. The maximum adsorption capacities of manganoxide mineral for lead and cadmium ions were calculated from the Langmuir isotherm and were 98 and 6.8 mg/g, respectively. Thermodynamic parameters such as the change of Gibbs free energy, enthalpy and entropy of adsorption were also calculated and it was found that the lead and cadmium uptake reactions by manganoxide mineral were endothermic and spontaneous in nature. Therefore, manganoxide mineral can be used as adsorbents for lead and cadmium ions removal processes as an alternative natural mineral among the others.展开更多
The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 r...The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.展开更多
The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spe...The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.展开更多
This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of...This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of methanol on an activated carbon at the molecular level. The adsorption isotherms obtained in the linear region (or adsorption constant) are exploited as a model parameter required for the adsorption process simulation. The adsorption process model described by a set of partial differential equations (PDEs) is solved by using the conservation element and solution element method, which produces a fast and an accurate numerical solution to PDEs. The simulation results obtained from the adsorption constant estimated at the molecular level are in good agreement with the experimental results of the pulse response. The systematical multiscale simulation approach addressed in this study may be useful to accelerate the adsorption process development by reducing the number of experiments.展开更多
The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated...The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.展开更多
Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring r...Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring results and theoretical analyses,the reasons for the peak or the maximum adsorption capacity appearing in the excess adsorption isotherms are explained.The rules of the peak occurrence are summarized.And then,based on the features of coal pore structure,the adsorption features of high-pressure gas,the microcosmic interaction relationship of coal surface and CH4 molecule,and the coalbed methane reservoir conditions,three theoretical assumptions on the coal adsorption high-pressure CH_4 are suggested.Thereafter,on the basis of these theoretical assumptions,the Ono-Kondo lattice model is processed for simplification and deformation. Subsequently,the equations modeling the excess adsorption isotherm of high-pressure CH_4 adsorption on coal are obtained.Through the verification on the measurement data,the fitting results indicate that it is feasible to use the Ono-Kondo lattice mode to model the excess adsorption isotherm of high-pressure CH_4 adsorption on coal.展开更多
It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to pe...It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to perform the CH_4 adsorption experiments using the gravimetric method at temperatures of 293.60 K, 311.26 K, 332.98 K and 352.55 K and pressures up to 19 MPa. The excess adsorption capacity of CH_4 in dry block anthracite increased, followed by a sequence decrease with the increasing pressure. High temperature restrained the growth of the excess adsorption due to that the adsorption is an intrinsically physical and exothermic process. The excess adsorption peak decreased slowly with the increase of temperature and intersected at a pressure of more than 18 MPa; meanwhile, the pressure at the excess adsorption peak increased. The existing correlations were exanfined in terms of density rather than pressure. The DR+k correlation, with an average relative deviation of 4-0.51%, fitted our data better than the others, with an average relative deviation of up to 2.29%. The transportation characteristics of CH_4 adsorption was also investigated in this study, including the adsorption rate and diffusion in block coal. The kinetic data could be described by a modified unipore model. The adsorption rates were found to exhibit dependence on pressure and temperature at low pressures, while the calculated diffusivities exhibited little temperature dependence. In addition, the kinetic characteristics were compared between CH_4 and CO_2 adsorption on the block coal. The excess adsorption ratios of CO_2 to CH_4 obtained from the DR+k model decreased with the increasing pressure.展开更多
The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore struc...The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.展开更多
Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tio...Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.展开更多
Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powde...Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.展开更多
This study investigated the adsorption ability of ZCHC (zeolite/chitosan hybrid composite) as adsorbent for chromium (Cr(Ⅵ)), ZCHC was prepared with sol-gel method by mixing zeolite and chitosan. Adsorption exp...This study investigated the adsorption ability of ZCHC (zeolite/chitosan hybrid composite) as adsorbent for chromium (Cr(Ⅵ)), ZCHC was prepared with sol-gel method by mixing zeolite and chitosan. Adsorption experiment from aqueous solutions containing known amount of Cr(Ⅵ) using zeolite, chitosan and ZCHC was explored to evaluate the efficiency of ZCHC as adsorbent for Cr in a batch system. The amount of Cr(Ⅵ) adsorbed at different pH values, initial concentrations, adsorbent dosages, and contact times were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry) in order to determine the optimum conditions for Cr(Ⅵ) adsorption. Furthermore, the adsorption mechanism of Cr(Ⅵ) by zeolite, chitosan and ZCHC was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, the rates of adsorption were found to conform to pseudo-second order kinetics.展开更多
基金Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0749)
文摘A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.
基金the National Basic Research Program of China (No.2005CB221503)the Major Program of the National Natural Science Foundation (Nos.70533050 and 50674089) for their support of this project
文摘Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressure and saturated vapor pressure,which indicates that molecular layer adsorption or micropore filling may occur in coal.No clear equilibrium state was observed on the isothermal adsorption curves under relative pressure(P /P0 ) ranging from 0 to 0.8.The fitted results show that the accuracy of the D-A equation is highest with n=1.Micropores are more developed in coal by comparing the BET equation with a pressure mercury injection method on the surface area.The D-A equation(n=1) provides the best fit.By comparing the calculated specific surface area of the BET equation and the mercury intrusion method,it is found that micropore adsorption of CO2 occupies a dominant position.
基金Supported by National Natural Science Foundation of China(41271267)National Key Technology Research and Development Program(2013BAJ11B03)Special Scientific Research Fund of Environment Friendly Public Welfare Profession of China(2013467036)~~
文摘Ammonium adsorption and desorption properties by purple soils with dif- ferent pH were studied. The results showed that the adsorption and desorption amounts of NH4+ by purple soils increased with the increase of NH4+ concentration, regardless of soil pH values; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 6.0 were 10.3 and 7.96 mg/g, respectively; the largest adsorp- tion and desorption amounts of NH4+ by purple soil at pH 7.2 were 12.8 and 4.62 mg/g, respectively; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 8.0 were 13.5 and 2.23 mg/g, respectively. The isothermal adsorption ki- netics of NH4+ by purple soils fits the Freundlich equation best (R〉0.95). This study shows that the adsorption of NH4+ by purple soils with different pH values is multi- molecular layer uneven surface adsorption.
基金supported by the National Natural Science Foundation of China (No.20877077)the Project of Jiangsu Provincial Science and Technology Office (No.BE2008087)
文摘A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.
文摘Batch adsorption from aqueous solutions in a slightly basic medium of Methylene Blue, up to 2500 mg/L, onto synthetic magnesium silicate (Florisil) of three particle size ranges (mean diameters of 112, 200 and 425 μm) was compared to the corresponding adsorption onto activated carbon and Amberlite XAD-2. The best fit of the kinetic results was achieved by a pseudo second-order equation. The equilibrium data were found to be well represented by the Langmuir isotherm equation. Amberlite XAD-2, an unspecific adsorbent capable of adsorbing exclusively through a surface effect, exhibited a poor dye uptake, confirming that the adsorption mechanism on Florisil was due to electrostatic attraction and ion exchange. Moreover, the comparison between Florisil and the other adsorbents was performed on the basis of the evaluation of the surface area and pore volume occupied by the adsorbed dye.
基金the China PostdoctoralScience Foundation (No. 20070420811)the Edu-cation Department of Henan Province in China (No.200510459016)
文摘Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was deter...
文摘The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 nanoparticles were then immobilized on ordinary sand for adsorption studies. Adsorption isotherms were conducted on the synthesized nanoparticles as well as the sand coated with TiO2 nanoparticles under varying conditions of air and light, namely, the air-sunlight (A-SL), air-light (AL), air-dark (AD) and nitrogen-dark (ND). X-ray diffraction (XRD) analysis showed that the pure and iron-doped TiO2 nanoparticles were in 100% anatase crystalline phase with crystai sizes of 108 and 65 nm, respectively. Adsorption of arsenic on the three adsorbents was non-linear that could be described by the Freundlich and Langmuir adsorption models. Iron doping enhanced the adsorption capacity of TiO2 nanoparticles by arresting the grain growth and making it visible light responsive resulting in a higher affinity for arsenic. Similarly, the arsenic removal by adsorption on the sand coated with TiO2 nanoparticles was the highest among the three types of sand used. In all cases, As(V) was adsorbed more compared with As(Ⅲ). The solution pH appeared to be the most important factor in controlling the amount of arsenic adsorbed.
文摘Azo dyes have received considerable attention because of their association with various human health problems. The aim of the investigation is to determine the adsorption behavior ofazo dyes in aqueous solution on DG06, GSE17200, and GSE17201 soils using C. I. Acid Red 14 (AR14) as example. The experimental results indicate that the Freundlich model expresses the adsorption isotherm better than the Langmuir model and the pseudo-second-order model achieves adsorption of AR14 on the three soils well. Based on the pseudo-second-order model, the adsorption thermodynamic of AR14 on DG06 soil have been studied and the thermodynamics parameter of AGO is determined and AGO value shows the adsorption process of AR14 on DG06 is mainly physical in nature. Furthermore, the effects of temperature, pH and salinity (NaC1) on adsorption have been investigated. The decrease in pH or the increase in salinity enhances the adsorption of AR14 by DG06, GSE17200, and GSE17201.
文摘The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.
文摘Removal of lead and cadmium ions from aqueous solutions by adsorption process was investigated. Low cost and locally available natural mineral of manganoxide mineral was used as an adsorbent. The kinetics of adsorption process data was examined using the pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models. The rate constants of adsorption for all these kinetics models were calculated and compared. The adsorption kinetics was best described by the pseudo second-order model. The Langmuir and Freundlich adsorption isotherm models were applied to the experimental equilibrium data at different temperatures. The experimental data well fitted to Langmuir isotherm model. The maximum adsorption capacities of manganoxide mineral for lead and cadmium ions were calculated from the Langmuir isotherm and were 98 and 6.8 mg/g, respectively. Thermodynamic parameters such as the change of Gibbs free energy, enthalpy and entropy of adsorption were also calculated and it was found that the lead and cadmium uptake reactions by manganoxide mineral were endothermic and spontaneous in nature. Therefore, manganoxide mineral can be used as adsorbents for lead and cadmium ions removal processes as an alternative natural mineral among the others.
文摘The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.
文摘The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.
基金the Basic Research Program of the Korea Science & Engineering Foundation (KoSEF, No. R01-2006-000-10786-0).
文摘This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of methanol on an activated carbon at the molecular level. The adsorption isotherms obtained in the linear region (or adsorption constant) are exploited as a model parameter required for the adsorption process simulation. The adsorption process model described by a set of partial differential equations (PDEs) is solved by using the conservation element and solution element method, which produces a fast and an accurate numerical solution to PDEs. The simulation results obtained from the adsorption constant estimated at the molecular level are in good agreement with the experimental results of the pulse response. The systematical multiscale simulation approach addressed in this study may be useful to accelerate the adsorption process development by reducing the number of experiments.
基金Project(UKM-GUP-BTT-07-25-170) supported by Universiti Kebangsaan Malaysia
文摘The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.
基金supported by the project of China National 973 Program"Basic Research on Enrichment Mechanism and Improving the Exploitation Efficiency of Coalbed Methane Reservoir"(Grant No. 2009CB219600)the National Natural Science Foundation of China(Grant No.40672100)
文摘Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring results and theoretical analyses,the reasons for the peak or the maximum adsorption capacity appearing in the excess adsorption isotherms are explained.The rules of the peak occurrence are summarized.And then,based on the features of coal pore structure,the adsorption features of high-pressure gas,the microcosmic interaction relationship of coal surface and CH4 molecule,and the coalbed methane reservoir conditions,three theoretical assumptions on the coal adsorption high-pressure CH_4 are suggested.Thereafter,on the basis of these theoretical assumptions,the Ono-Kondo lattice model is processed for simplification and deformation. Subsequently,the equations modeling the excess adsorption isotherm of high-pressure CH_4 adsorption on coal are obtained.Through the verification on the measurement data,the fitting results indicate that it is feasible to use the Ono-Kondo lattice mode to model the excess adsorption isotherm of high-pressure CH_4 adsorption on coal.
基金supported by Liaoning Provincial Natural Science Foundation of China(201202028)the National Program on the Key Basic Research Project(No.2011CB707304)+1 种基金the National Natural Science Foundation of China(No.51006016)the China Scholarship Council
文摘It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to perform the CH_4 adsorption experiments using the gravimetric method at temperatures of 293.60 K, 311.26 K, 332.98 K and 352.55 K and pressures up to 19 MPa. The excess adsorption capacity of CH_4 in dry block anthracite increased, followed by a sequence decrease with the increasing pressure. High temperature restrained the growth of the excess adsorption due to that the adsorption is an intrinsically physical and exothermic process. The excess adsorption peak decreased slowly with the increase of temperature and intersected at a pressure of more than 18 MPa; meanwhile, the pressure at the excess adsorption peak increased. The existing correlations were exanfined in terms of density rather than pressure. The DR+k correlation, with an average relative deviation of 4-0.51%, fitted our data better than the others, with an average relative deviation of up to 2.29%. The transportation characteristics of CH_4 adsorption was also investigated in this study, including the adsorption rate and diffusion in block coal. The kinetic data could be described by a modified unipore model. The adsorption rates were found to exhibit dependence on pressure and temperature at low pressures, while the calculated diffusivities exhibited little temperature dependence. In addition, the kinetic characteristics were compared between CH_4 and CO_2 adsorption on the block coal. The excess adsorption ratios of CO_2 to CH_4 obtained from the DR+k model decreased with the increasing pressure.
基金the financial support from the Research Fund for the Doctoral Program of Higher Education of China (No.2006 0290006)
文摘The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.
文摘Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.
基金Funded by the National Natural Science Foundation of China(No.21476269)
文摘Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.
文摘This study investigated the adsorption ability of ZCHC (zeolite/chitosan hybrid composite) as adsorbent for chromium (Cr(Ⅵ)), ZCHC was prepared with sol-gel method by mixing zeolite and chitosan. Adsorption experiment from aqueous solutions containing known amount of Cr(Ⅵ) using zeolite, chitosan and ZCHC was explored to evaluate the efficiency of ZCHC as adsorbent for Cr in a batch system. The amount of Cr(Ⅵ) adsorbed at different pH values, initial concentrations, adsorbent dosages, and contact times were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry) in order to determine the optimum conditions for Cr(Ⅵ) adsorption. Furthermore, the adsorption mechanism of Cr(Ⅵ) by zeolite, chitosan and ZCHC was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, the rates of adsorption were found to conform to pseudo-second order kinetics.