期刊文献+
共找到3,486篇文章
< 1 2 175 >
每页显示 20 50 100
Plasma Modification of Activated Carbon Fibers for Adsorption of SO_2 被引量:3
1
作者 车垚 周家勇 王祖武 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第10期1047-1052,共6页
Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and cataly... Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2. 展开更多
关键词 cold plasma surface modification activated carbon fibers adsorption SO2
下载PDF
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
2
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 Reaction mechanism Powdered activated coke preparation SO_(2)adsorption One-step rapid activation Flue gas atmosphere
下载PDF
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
3
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
下载PDF
Insights into SO_2 and H_2O co-adsorption on Cu(100) surface with calculations of density functional theory
4
作者 魏薪 董超芳 +3 位作者 陈章华 黄建业 肖葵 李晓刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4102-4109,共8页
The co-adsorption behaviors of SO2 and H2 O on face-centered cubic Cu(100) ideal surface were studied using the GGA-r PBE method of density functional theory(DFT) with slab models. The optimized structures of sing... The co-adsorption behaviors of SO2 and H2 O on face-centered cubic Cu(100) ideal surface were studied using the GGA-r PBE method of density functional theory(DFT) with slab models. The optimized structures of single H2 O and SO2 on Cu(100) surface were calculated at the coverage of 0.25 ML(molecular layer) and 0.5 ML. The results show that there was no obvious chemical adsorption of them on Cu(100) surface. The adsorbed structures, adsorption energy and electronic properties including difference charge density, valence charge density, Bader charge analysis and partial density of states(PDOS) of co-adsorbed structures of H2 O and SO2 were investigated to illustrate the interaction between adsorbates and surface. H2 O and SO2 can adsorb on surface of Cu atoms chemically via molecule form at the coverage of 0.25 ML, while H2 O dissociated into OH adsorbed on surface and H bonded with SO2 which keeps away from surface at the coverage of 0.5 ML. 展开更多
关键词 SO2 H2O Cu density functional theory CO-adsorption slab model adsorption energy charge transfer
下载PDF
NH_(2)-MOF-199@粘胶复合非织造材料的制备及有机染料吸附性能
5
作者 孙辉 李逢春 +4 位作者 丰江丽 谢有秀 王冰冰 徐涛 于斌 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2024年第8期1-10,共10页
采用原位溶剂热法在粘胶水刺非织造材料(VSN)表面合成了金属有机框架材料NH_(2)-MOF-199,制备了NH_(2)-MOF-199@粘胶水刺复合非织造材料(NH_(2)-MOF-199@VSN);然后,将NH_(2)-MOF-199@VSN经200℃高温煅烧,得到炭化后的NH_(2)-MOF-199@VSN... 采用原位溶剂热法在粘胶水刺非织造材料(VSN)表面合成了金属有机框架材料NH_(2)-MOF-199,制备了NH_(2)-MOF-199@粘胶水刺复合非织造材料(NH_(2)-MOF-199@VSN);然后,将NH_(2)-MOF-199@VSN经200℃高温煅烧,得到炭化后的NH_(2)-MOF-199@VSNC。结果表明,呈八面体结构的NH_(2)-MOF-199晶体粒子被均匀、致密地固定在VSN表面。高温炭化后,NH_(2)-MOF-199粒子的表面出现小孔和裂纹。与VSN和NH_(2)-MOF-199@VSN相比,NH_(2)-MOF-199@VSNC对亚甲基蓝(MB)的吸附效果最佳。当吸附溶液的温度为30℃,pH=7时,NH_(2)-MOF-199@VSNC对MB的吸附效率最高,为98.42%,经5次重复吸附使用后,NH_(2)-MOF-199@VSNC对MB的吸附效率仍有65.76%。NH_(2)-MOF-199@VSNC对MB的吸附是吸热、熵增且自发的过程,与准一级吸附动力学模型相比,其对MB的吸附过程更适合用准二级吸附动力学模型描述,吸附机理以化学吸附为主,伴随着物理吸附。 展开更多
关键词 粘胶水刺非织造材料 NH_(2)-Mof-199 炭化 亚甲基蓝 吸附性能
下载PDF
掺杂CoFe_(2)O_(4)膨胀石墨对Pb(Ⅱ)的吸附性能
6
作者 姬莉 李媛媛 +1 位作者 王华 岳学庆 《非金属矿》 2024年第3期79-82,共4页
为解决膨胀石墨吸附后回收难的问题,采用柠檬酸基的溶胶-凝胶法将CoFe_(2)O_(4)粒子负载到膨胀石墨中,制备磁性膨胀石墨。利用扫描电子显微镜(SEM)和磁滞回线对样品的微观形貌和磁性能进行表征,研究了膨胀石墨和磁性膨胀石墨对Pb(Ⅱ)吸... 为解决膨胀石墨吸附后回收难的问题,采用柠檬酸基的溶胶-凝胶法将CoFe_(2)O_(4)粒子负载到膨胀石墨中,制备磁性膨胀石墨。利用扫描电子显微镜(SEM)和磁滞回线对样品的微观形貌和磁性能进行表征,研究了膨胀石墨和磁性膨胀石墨对Pb(Ⅱ)吸附性能的影响因素,包括吸附时间、Pb(Ⅱ)初始质量浓度、吸附剂用量和pH值等,并采用吸附动力学和吸附等温线模型对吸附行为及机理进行了分析。结果表明,膨胀石墨和磁性膨胀石墨对Pb(Ⅱ)的最大吸附量分别为95.6、69.8 mg/g,吸附动力学符合二级动力学模型,吸附等温线符合Langmuir模型。掺杂CoFe_(2)O_(4)粒子缩短了膨胀石墨对Pb(Ⅱ)吸附平衡所需的时间,并使最佳吸附pH值向更加中性条件迁移。 展开更多
关键词 膨胀石墨 Cofe_(2)O_(4)粒子 Pb(Ⅱ) 吸附
下载PDF
Mechanochemical synthesis of oxygenated alkynyl carbon materials with excellent Hg(Ⅱ) adsorption performance from CaC2 and carbonates 被引量:1
7
作者 Yingjie Li Songping Li +3 位作者 Xinyi Xu Hong Meng Yingzhou Lu Chunxi Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期275-282,共8页
Adsorptive removal of heavy metal ions from wastewater is very important,and the key is the development of efficient sorbents.In this work,oxygenated alkynyl carbon materials(OACMs)were synthesized via mechanochemical... Adsorptive removal of heavy metal ions from wastewater is very important,and the key is the development of efficient sorbents.In this work,oxygenated alkynyl carbon materials(OACMs)were synthesized via mechanochemical reaction of CaC_(2) and a carbonate(CaCO_(3),Na2CO_(3),or NaHCO_(3))at ambient temperature.The resultant OACMs are micro mesoporous carbon nanomaterials with high specific area(>648 m2 g^(-1)),highly crosslinked texture,and rich alkynyl and oxygenated groups.The OACMs exhibit excellent Hg(Ⅱ)adsorption due to the soft acid-soft base interaction between alkynyl and Hg(Ⅱ),and OACM-3 derived from CaC_(2) and NaHCO_(3) has the saturated Hg(Ⅱ)adsorbance of 483.9 mg g^(-1)along with good selectivity and recyclability.The adsorption is mainly chemisorption following the Langmuir mode.OACM-3 also shows high adsorbance for other heavy metal ions,e.g.256.6 mg g^(-1)for Pb(II),232.4 mg g^(-1)for Zn(II),and 198.7 mg g^(-1)for Cu(II).This work expands the mechnochemical reaction of CaC_(2)with carbonates and possibly other oxyanionic salts,provides a new synthesis approach for functional alkynyl carbon materials with excellent adsorption performance for heavy metal ions,as well as a feasible approach for CO2 resource utilization. 展开更多
关键词 CaC_(2) MECHANOCHEMISTRY Alkynyl carbon materials Hg(Ⅱ) Heavy metal adsorption
下载PDF
Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution
8
作者 Yueting Shi Junhai Zhao +3 位作者 Lingli Chen Hongru Li Shengtao Zhang Fang Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期233-246,共14页
In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and ... In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction. 展开更多
关键词 Amphiphilic ionic molecule adsorption Corrosion Electrochemistry COPPER H_(2)SO_(4)solution
下载PDF
Photocatalytic activation of sulfite by N-doped porous biochar/MnFe_(2)O_(4) interface-driven catalyst for efficient degradation of tetracycline 被引量:1
9
作者 Long Cheng Yuanhui Ji 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期481-494,共14页
A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline... A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar. 展开更多
关键词 BIOCHAR MnFe_(2)O_(4) SULFITE adsorption PHOTOCATALYSIS
下载PDF
Comparative study of the adsorption performance of NH_(2)-functionalized metal organic frameworks with activated carbon composites for the treatment of phenolic wastewaters
10
作者 Bolong Jiang Shunjie Shi +3 位作者 Yanyan Cui Jiayou Li Nan Jiang Yanguang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期130-139,共10页
To better understand the role of the-NH_(2)group in adsorption process of phenolic wastewaters,NH_(2)-functionalized MIL-53(Al)composites with activated carbon(NH_(2)-M(Al)@(B)AC)were prepared.The results showed that ... To better understand the role of the-NH_(2)group in adsorption process of phenolic wastewaters,NH_(2)-functionalized MIL-53(Al)composites with activated carbon(NH_(2)-M(Al)@(B)AC)were prepared.The results showed that the-NH_(2)group could increase the mesopore volume for composites,which promotes mass transfer and full utilization of active sites,because hierarchical mesopore structure makes the adsorbent easier to enter the internal adsorption sites.Furthermore,the introduction of the-NH_(2)group can improve the adsorption capacity,decrease the activation energy,and enhance the interaction between the adsorbent and p-nitrophenol,demonstrating that the-NH_(2)group plays a crucial role in the adsorption of p-nitrophenol.The density functional theory calculation results show that the H-bond interaction between the-NH_(2)group in the adsorbent and the-NO_(2)in the p-nitrophenol(adsorption energy of -35.5 kJ·mol^(-1)),and base-acid interaction between the primary-NH_(2)group in the adsorbent and the acidic-OH group in the p-nitrophenol(adsorption energy of -27.3 kJ·mol^(-1))are predominant mechanisms for adsorption in terms of the NH_(2)-functionalized adsorbent.Both NH_(2)-functionalized M(Al)@AC and M(Al)@BAC composites exhibited higher p-nitrophenol adsorption capacity than corresponding nonfunctionalized composites.Among the composites,the NH_(2)-M(Al)@BAC had the highest p-nitrophenol adsorption capacity of 474 mg·g^(-1). 展开更多
关键词 NH_(2)-functionalized adsorbent Phenolic wastewaters adsorption Mechanism Density functional theory
下载PDF
Highly defective HKUST-1 with excellent stability and SO_(2) uptake: The hydrophobic armor effect of functionalized ionic liquids
11
作者 Ping Liu Kaixing Cai +2 位作者 Keliang Wang Tianxiang Zhao Duan-Jian Tao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1711-1723,共13页
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI... Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions. 展开更多
关键词 Metal organic frameworks SO_(2)adsorption Water stability MECHANOCHEMISTRY Ionic liquids
下载PDF
改性Zn-MOF-74对硫化氢的吸附研究
12
作者 刘萱 宋昕芮 +3 位作者 杨永杰 杨超 上官炬 樊惠玲 《化学反应工程与工艺》 CAS 2024年第2期107-115,共9页
MOF-74具有独特的金属五配位四方锥构型,在气体吸附领域具有广泛的应用前景。采用理论计算和实验相结合的方法研究了改性前后Zn-MOF-74对硫化氢(H_(2)S)的吸附。利用巨正则蒙特卡罗(GCMC)模拟和密度泛函理论(DFT)计算分析了Co和Ni金属... MOF-74具有独特的金属五配位四方锥构型,在气体吸附领域具有广泛的应用前景。采用理论计算和实验相结合的方法研究了改性前后Zn-MOF-74对硫化氢(H_(2)S)的吸附。利用巨正则蒙特卡罗(GCMC)模拟和密度泛函理论(DFT)计算分析了Co和Ni金属中心改性的Zn-MOF-74对H_(2)S吸附位点的变化、与H_(2)S的相互作用以及吸附性能。结果表明:Zn-Co-MOF-74和Zn-Ni-MOF-74对H_(2)S的优先吸附位点仍在Zn原子处,并且孔腔内吸附的H_(2)S分子明显增多,O吸附位点吸附能力也有所提高。Zn-Co-MOF-74和Zn-Ni-MOF-74对H_(2)S的吸附容量明显提升,这与MOF对H_(2)S的稳定性增强有关,Zn-MOF-74与H_(2)S之间过强的相互作用会导致MOF结构坍塌,阻碍H_(2)S扩散,进而影响其吸附性能。 展开更多
关键词 Zn-Mof-74改性 H_(2)S吸附 蒙特卡罗模拟 密度泛函理论
下载PDF
MOF@γ-Al_(2)O_(3)复合材料的制备及其选择性染料吸附性能研究
13
作者 崔建鹏 罗楠 +3 位作者 朱晓宇 张潇飒 李文泽 刘禹 《当代化工研究》 CAS 2024年第3期74-76,共3页
本文通过原位生长法将金属有机骨架(MOF)与γ-Al2O3相结合制备了两种MOF@γ-Al_(2)O_(3)复合材料,即UIO-66/UIO-66-NH2@γ-Al_(2)O_(3),并将其应用于选择性染料吸附性能研究。结果表明:UIO-66/UIO-66-NH_(2)@γ-Al2O3复合材料可选择性... 本文通过原位生长法将金属有机骨架(MOF)与γ-Al2O3相结合制备了两种MOF@γ-Al_(2)O_(3)复合材料,即UIO-66/UIO-66-NH2@γ-Al_(2)O_(3),并将其应用于选择性染料吸附性能研究。结果表明:UIO-66/UIO-66-NH_(2)@γ-Al2O3复合材料可选择性吸附阴离子染料(刚果红,CR),吸附量分别可以达到1520.91mg·g^(-1)和1598.65mg·g^(-1)。同时,UIO-66/UIO-66-NH2@γ-Al_(2)O_(3)复合材料还具备优异的稳定性,重复使用10次后对CR的选择性吸附性能基本保持不变。 展开更多
关键词 金属有机骨架 γ-Al_(2)O_(3) 复合材料 原位生长法 染料吸附
下载PDF
Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing
14
作者 Mokhamad Nur Cahyadi Arizal Bawasir +7 位作者 Syachrul Arief Amien Widodo Meifal Rusli Deni Kusumawardani Yessi Rahmawati Ana Martina Putra Maulida Hilda Lestiana 《Geodesy and Geodynamics》 EI CSCD 2024年第1期33-41,共9页
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ... Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period. 展开更多
关键词 Semeru GNSS Water vapor RAINFALL SO_(2)
下载PDF
Flower-like tin oxide membranes with robust three-dimensional channels for efficient removal of iron ions from hydrogen peroxide
15
作者 Risheng Shen Shilong Li +3 位作者 Yuqing Sun Yuan Bai Jian Lu Wenheng Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期1-7,共7页
Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxid... Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxidative radicals(e.g.OH)generated via the activation of H_(2)O_(2)by iron ions(Fe^(3+)),the short effective lifetime of membranes remains a challenge.Inorganic nano tin oxide(SnO_(2))has great potential for the removal of Fe^(3+)in strongly oxidative H_(2)O_(2)because of its ability to stabilize H2O_(2)and preferentially adsorb Fe^(3+).Herein,we have designed for the first time a flower-like robust SnO_(2)membrane on the ceramic support by in situ template-free one-step hydrothermal method.The three-dimensional loose pore structure in the membrane built by interlacing SnO_(2)nanosheets endows the SnO_(2)membrane with a high specific surface area and abundant adsorption sites(AOH).Based on the coordination complexation and electrostatic attraction between the SnO_(2)surface and Fe^(3+),the membrane shows a high Fe3+removal efficiency(83%)and permeability(24 L·m^(-2)·h^(-1)·MPa^(-1))in H_(2)O_(2).This study provides an innovative and simple approach to designing robust SnO_(2)membranes for highly efficient removal of Fe^(3+)in harsh environments,such as strong oxidation conditions. 展开更多
关键词 Hydrogen peroxide SnO_(2)membrane adsorption HYDROTHERMAL
下载PDF
Research on the impact of manufacturing servitization on environmental pollution:spatial econometric analysis of sulfur dioxide based on 284 prefecture-level cities
16
作者 Qiu Xia Zhibin Zhou 《Chinese Journal of Population,Resources and Environment》 2024年第3期258-267,共10页
Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empi... Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empirically analyze the impact of manufacturing servitization on urban sulfur dioxide(SO_(2))emissions within the classical Environmental Kuznets Curve(EKC)framework.The results show that manufacturing servitization can reduce SO_(2) emissions.Producer servitization and consumptive services can both significantly reduce industrial SO_(2) emissions.Transportation and warehousing servitization,information servitization,leasing,and commercial servitization,technology research and development servitization significantly reduce SO_(2) emissions;technology research and development servitization,in particular,have the largest influence coefficient,while the reduction effect of servitization in the wholesale and retail and finance sectors is not significant.The study also found that servitization reduced the SO_(2) emissions through technological innovation and industrial structure upgrading. 展开更多
关键词 SERVITIZATION Environmental pollution SO_(2)emission EKC framework Spatial econometrics
下载PDF
Synergistic strengthening mechanism of Ca^(2+)-sodium silicate to selective separation of feldspar and quartz
17
作者 Bo Lin Jingzhong Kuang +3 位作者 Yiqiang Yang Zheyu Huang Delong Yang Mingming Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1985-1995,共11页
Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi... Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided. 展开更多
关键词 FELDSPAR QUARTZ Ca^(2+)-sodium silicate selective adsorption flotation separation
下载PDF
Insights into carbon dioxide sequestration into coal seams through coupled gas flow-adsorption-deformation modelling
18
作者 Hywel Thomas Min Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期26-40,共15页
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this... Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams. 展开更多
关键词 CO_(2)geological storage Coal seam adsorption Desorption hysteresis
下载PDF
Construction of MnS/MoS_(2) heterostructure on two-dimensional MoS_(2) surface to regulate the reaction pathways for high-performance Li-O_(2) batteries
19
作者 Guoliang Zhang Han Yu +6 位作者 Xia Li Xiuqi Zhang Chuanxin Hou Shuhui Sun Yong Du Zhanhu Guo Feng Dang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期443-452,I0012,共11页
The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuni... The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuning the adsorption strength in 2D materials to the reaction intermediates is essential for achieving high-performance LOBs.Herein,a MnS/MoS_(2) heterostructure is designed as a cathode catalyst by adjusting the adsorption behavior at the surface.Different from the toroidal-like discharge products on the MoS_(2) cathode,the MnS/MoS_(2) surface displays an improved adsorption energy to reaction species,thereby promoting the growth of the film-like discharge products.MnS can disturb the layer growth of MoS_(2),in which the stack edge plane features a strong interaction with the intermediates and limits the growth of the discharge products.Experimental and theoretical results confirm that the MnS/MoS_(2) heterostructure possesses improved electron transfer kinetics at the interface and plays an important role in the adsorption process for reaction species,which finally affects the morphology of Li_2O_(2),In consequence,the MnS/MoS_(2) heterostructure exhibits a high specific capacity of 11696.0 mA h g^(-1) and good cycle stability over 1800 h with a fixed specific capacity of 600 mA h g^(-1) at current density of100 mA g^(-1) This work provides a novel interfacial engineering strategy to enhance the performance of LOBs by tuning the adsorption properties of 2D materials. 展开更多
关键词 Li-O_(2)batteries Two-dimensional materials MnS/MoS_(2)heterostructure Edge plane adsorption behavior
下载PDF
Accelerating lithium-sulfur battery reaction kinetics and inducing 3D deposition of Li_(2)S using interactions between Fe_(3)Se_(4)and lithium polysulfides
20
作者 Yihan Lin Liheng Li +5 位作者 Longjie Tan Yongliang Li Xiangzhong Ren Peixin Zhang Chuanxin He Lingna Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期540-553,I0012,共15页
Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of L... Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of Li_(2)S.To address these issues,a novel composite,using electrospinning technology,consisting of Fe_(3)Se_(4)and porous nitrogen-doped carbon nanofibers was designed for the interlayer of LSBs.The porous carbon nanofiber structure facilitates the transport of ions and electrons,while the Fe_(3)Se_(4)material adsorbs lithium polysulfides(LiPSs)and accelerates its catalytic conversion process.Furthermore,the Fe_(3)Se_(4)material interacts with soluble LiPSs to generate a new polysulfide intermediate,Li_(x)FeS_(y)complex,which changes the electrochemical reaction pathway and facilitates the three-dimensional deposition of Li_(2)S,enhancing the reversibility of LSBs.The designed LSB demonstrates a high specific capacity of1529.6 mA h g^(-1)in the first cycle at 0.2 C.The rate performance is also excellent,maintaining an ultra-high specific capacity of 779.7 mA h g^(-1)at a high rate of 8 C.This investigation explores the mechanism of the interaction between the interlayer and LiPSs,and provides a new strategy to regulate the reaction kinetics and Li_(2)S deposition in LSBs. 展开更多
关键词 Lithium-sulfur batteries Polysulfide intermediates Li_(2)S electrodeposition INTERLAYERS Electrostatic spinning adsorption Catalysis
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部