Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibriu...Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was deter...展开更多
The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.P...The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.展开更多
A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by consideri...A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.展开更多
The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spe...The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.展开更多
Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring r...Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring results and theoretical analyses,the reasons for the peak or the maximum adsorption capacity appearing in the excess adsorption isotherms are explained.The rules of the peak occurrence are summarized.And then,based on the features of coal pore structure,the adsorption features of high-pressure gas,the microcosmic interaction relationship of coal surface and CH4 molecule,and the coalbed methane reservoir conditions,three theoretical assumptions on the coal adsorption high-pressure CH_4 are suggested.Thereafter,on the basis of these theoretical assumptions,the Ono-Kondo lattice model is processed for simplification and deformation. Subsequently,the equations modeling the excess adsorption isotherm of high-pressure CH_4 adsorption on coal are obtained.Through the verification on the measurement data,the fitting results indicate that it is feasible to use the Ono-Kondo lattice mode to model the excess adsorption isotherm of high-pressure CH_4 adsorption on coal.展开更多
The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated...The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.展开更多
Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No....Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressure and saturated vapor pressure,which indicates that molecular layer adsorption or micropore filling may occur in coal.No clear equilibrium state was observed on the isothermal adsorption curves under relative pressure(P /P0 ) ranging from 0 to 0.8.The fitted results show that the accuracy of the D-A equation is highest with n=1.Micropores are more developed in coal by comparing the BET equation with a pressure mercury injection method on the surface area.The D-A equation(n=1) provides the best fit.By comparing the calculated specific surface area of the BET equation and the mercury intrusion method,it is found that micropore adsorption of CO2 occupies a dominant position.展开更多
A method named as 'volume-expanding and pressure-reducing adsorption' is proposed. It can be used to measure the isotherms under supercritical condition. The adsorption isotherms of phenol on activated carbons...A method named as 'volume-expanding and pressure-reducing adsorption' is proposed. It can be used to measure the isotherms under supercritical condition. The adsorption isotherms of phenol on activated carbons and polymeric adsorbents are estimated and compared respectively for the systems of 'phenol-activated carbon-supercritical fluid CO2' and 'phenol-polymeric adsorbent-supercritical fluid CO2'. The results show that the amount of phenol adsorbed on the activated carbons and the polymeric adsorbents under the supercritical condition is much less than that under the general condition, which can be utilized to develop a technology regenerating the activated carbon with supercritical fluid. Moreover, the effects of ethyl alcohol, used as the third component, on the isotherms of phenol on the activated carbons and polymeric adsorbents under the supercritical condition are also investigated.展开更多
It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to pe...It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to perform the CH_4 adsorption experiments using the gravimetric method at temperatures of 293.60 K, 311.26 K, 332.98 K and 352.55 K and pressures up to 19 MPa. The excess adsorption capacity of CH_4 in dry block anthracite increased, followed by a sequence decrease with the increasing pressure. High temperature restrained the growth of the excess adsorption due to that the adsorption is an intrinsically physical and exothermic process. The excess adsorption peak decreased slowly with the increase of temperature and intersected at a pressure of more than 18 MPa; meanwhile, the pressure at the excess adsorption peak increased. The existing correlations were exanfined in terms of density rather than pressure. The DR+k correlation, with an average relative deviation of 4-0.51%, fitted our data better than the others, with an average relative deviation of up to 2.29%. The transportation characteristics of CH_4 adsorption was also investigated in this study, including the adsorption rate and diffusion in block coal. The kinetic data could be described by a modified unipore model. The adsorption rates were found to exhibit dependence on pressure and temperature at low pressures, while the calculated diffusivities exhibited little temperature dependence. In addition, the kinetic characteristics were compared between CH_4 and CO_2 adsorption on the block coal. The excess adsorption ratios of CO_2 to CH_4 obtained from the DR+k model decreased with the increasing pressure.展开更多
This research proposes a modified two-dimensional Peng-Robinson equation model to predict adsorption isotherm in adsorbate-adsorbent systems. The parameters of the proposed model are calculated by using the optimizati...This research proposes a modified two-dimensional Peng-Robinson equation model to predict adsorption isotherm in adsorbate-adsorbent systems. The parameters of the proposed model are calculated by using the optimization of experimental data for the different single gas adsorption systems at various temperatures. The experimental adsorption equilibrium data of adsorbate-adsorbent systems was compared with the calculated results in our proposed model and the two-dimensional Hill-deBoer equation model. The proposed model as indicated in the results shows a better prediction of the experimental results compared with two others.展开更多
In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and t...In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.展开更多
A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the ads...A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.展开更多
Alum sludge (AS) is a world-wide by-product generated in the drinking water treatment process when aluminum salts are used as coagulant. Its high AI content makes it a potential adsorbent for flouride removal from w...Alum sludge (AS) is a world-wide by-product generated in the drinking water treatment process when aluminum salts are used as coagulant. Its high AI content makes it a potential adsorbent for flouride removal from water. A high performance adsorbent was fabricated via heat treatment of AS and batch adsorption experiments were carried out to investigate its flouride adosroption performance. The results indicated that AS treated at 300℃ (AS300) for 1 h had the highest adsorption capacity for fluoride (52.9% fluoride removal). The adsorption of fluoride by AS300 fitted better the Langmuir isotherm model than the Freundlich model. The maximum fluoride adsorption capacity of AS300 increased from 4.0 to 9.3 mg/g sludge when reaction temperature increased from 15 to 35 ℃. Thermodynamic parameters showed that the adsorption of fluoride by AS was spontaneous and endothermie. Hence higher temperature was favorable for fluoride adsorption. The adsorption process followed the pseudo-second-order equation. In addition, the fluoride adsorption on AS300 decreased from 4.3 to 2.5 mg/g sludge when the solution initial pH increased from 4.0 to 9.0, which meant that adsorption capacity was greatly dependent upon the initial pH of the solution. The results provide new insight into the resource utilization of AS for fluoride removal.展开更多
The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculat...The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution,展开更多
This study investigated <i>Bacillus subtilis</i> ATCC13952 as an adsorbent for arsenic in groundwater. Batch experiments were used to determine the effect of contact time, adsorbent dose, arsenic (III) con...This study investigated <i>Bacillus subtilis</i> ATCC13952 as an adsorbent for arsenic in groundwater. Batch experiments were used to determine the effect of contact time, adsorbent dose, arsenic (III) concentration, pH, and temperature on the process. The percentage of arsenic (III) removed was high at a contact time of four days, 3.0 mL of <i>Bacillus subtilis</i> ATCC13952, pH 8 and temperature of 35°C. The kinetics of the process showed the Elovich kinetics model as the best fit for the process. This indicates that arsenic removal was by chemisorption. The analysis of the nonlinear equilibrium isotherms and the error functions showed the Langmuir isotherm as best fit for the process. Mechanistic study of the process indicated bulk diffusion to be the rate-determining step. Thermodynamically, the process was favourable, spontaneous and feasible. When the community water samples were treated with the <i>Bacillus subtilis</i> ATCC13952 at the optimum contact time, adsorbent dose, pH and temperature, 99.96% - 99.97% of arsenic was removed across all sampling points within the studied communities. Hence, the results show that <i>Bacillus subtilis</i> ATCC13952 is an efficient adsorbent for arsenic in aqueous systems and the organism appears to hold the key to purging the environment of arsenic contamination.展开更多
Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more att...Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established.展开更多
The objective of this research was to enhance adsorption capacity of Acacia nilotica (keekar) sawdust for the abatement of chromium bearing wastewater and to investigate the effect of process parameters on adsorptio...The objective of this research was to enhance adsorption capacity of Acacia nilotica (keekar) sawdust for the abatement of chromium bearing wastewater and to investigate the effect of process parameters on adsorption capacity. The sawdust was activated by acid wash and functionalized subsequently with formaldehyde. Functionalization of activated sawdust raised its chromium removal efficiency of almost 10% as compared to its adsorption removal efficiency of HCl treated sawdust in a batch adsorption study. Adsorption kinetic data provided better fitting with pseudo second order model. Maximum adsorption capacity calculated through the best fitting Langmuir model was 6.34 mg·g^-1 and 8.2 mg·g^-1 for HCl treated and formaldehyde functionalized sawdust adsorbents, respectively. The adsorption of Cr(VI) was endothermic when studied by varying temperature from 20℃ to 50℃ for both activated and functionalized adsorbents.展开更多
A molecular imprinted polymer(MIP) was prepared with quereetin as the template and methaerylie acid(MAA) as the functional monomer. Aeetonitrile and methanol were used as the porogen with ethylene glycol dimethaer...A molecular imprinted polymer(MIP) was prepared with quereetin as the template and methaerylie acid(MAA) as the functional monomer. Aeetonitrile and methanol were used as the porogen with ethylene glycol dimethaerylate (EGDMA) as the erosslinker and 2,2'-azobis ( isobutyronitrile ) ( AIBN ) as the initiator. The experimental parameters of the equilibrium isotherms were estimated via linear and nonlinear regression analyses. The linear equadon as the functions of the adsorption concentration of the single compound in its solution and the competitive adsorption of the single compound in its mixed compounds solution was then expressed, and the adsorption equilibrium data were correlated to Langmuir and Freundlich isotherm models. The mixture compounds show competitive adsorption on the specific binding sites of quereetin-MIP. Furthermore, the competitive Langmnir isotherms were applied to the mixture compounds. The adsorption concentrations of quercetin, (+)eatechin(+C), and (-)epieateehin(EC) on the quercetin molecular imprinted polymer were compared. The quercetin-imprinted polymer shows extraordinarily higher adsorption ability for quercetin than for the two eateehin compounds that were also assessed.展开更多
Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were a...Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were adopted in reversed-phase high performance liguid chromatography (RP-HPLC). In FA, the concentration of stationary phase was measured from the elution curves and the isotherm was deter-mined by regression analysis, while the parameters by ECM were obtained by parameter optimization. The adsorption isotherms of thymidine from the two methods were very similar. The superiority of ECM over FA was that the consumption of sample was less and only one or two in-jections of sample were required.展开更多
A comparison of the adsorption isotherms of caffeine, theophylline and theobromine and the competitive adsorption of the three compounds on a C18 column were investigated. The experimental parameters of the equilibriu...A comparison of the adsorption isotherms of caffeine, theophylline and theobromine and the competitive adsorption of the three compounds on a C18 column were investigated. The experimental parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation as a function of the adsorption concentration of the single compound in its solution and the competitive adsorption of a single compound in a mixed solution were then determined. The adsorption equilibrium data were then correlated to the linear, Langmuir, Freundlich, Langmuir-Freundlich and stoichiometric displacement theory for adsorption(SDT-A) isotherm models. The mixed compounds of the three compounds were competitively adsorbed on the C18 particles. The expression of stoichiometric displacement theory for adsorption was found to be more suitable for adsorption of methylxanthines on a C18 column.展开更多
基金the China PostdoctoralScience Foundation (No. 20070420811)the Edu-cation Department of Henan Province in China (No.200510459016)
文摘Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was deter...
文摘The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0749)
文摘A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.
文摘The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.
基金supported by the project of China National 973 Program"Basic Research on Enrichment Mechanism and Improving the Exploitation Efficiency of Coalbed Methane Reservoir"(Grant No. 2009CB219600)the National Natural Science Foundation of China(Grant No.40672100)
文摘Four coal samples of different ranks are selected to perform the adsorption measurement of high-pressure methane(CH4).The highest equilibrium pressure of the measurement exceeds 20 MPa. Combined with the measuring results and theoretical analyses,the reasons for the peak or the maximum adsorption capacity appearing in the excess adsorption isotherms are explained.The rules of the peak occurrence are summarized.And then,based on the features of coal pore structure,the adsorption features of high-pressure gas,the microcosmic interaction relationship of coal surface and CH4 molecule,and the coalbed methane reservoir conditions,three theoretical assumptions on the coal adsorption high-pressure CH_4 are suggested.Thereafter,on the basis of these theoretical assumptions,the Ono-Kondo lattice model is processed for simplification and deformation. Subsequently,the equations modeling the excess adsorption isotherm of high-pressure CH_4 adsorption on coal are obtained.Through the verification on the measurement data,the fitting results indicate that it is feasible to use the Ono-Kondo lattice mode to model the excess adsorption isotherm of high-pressure CH_4 adsorption on coal.
基金Project(UKM-GUP-BTT-07-25-170) supported by Universiti Kebangsaan Malaysia
文摘The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.
基金the National Basic Research Program of China (No.2005CB221503)the Major Program of the National Natural Science Foundation (Nos.70533050 and 50674089) for their support of this project
文摘Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressure and saturated vapor pressure,which indicates that molecular layer adsorption or micropore filling may occur in coal.No clear equilibrium state was observed on the isothermal adsorption curves under relative pressure(P /P0 ) ranging from 0 to 0.8.The fitted results show that the accuracy of the D-A equation is highest with n=1.Micropores are more developed in coal by comparing the BET equation with a pressure mercury injection method on the surface area.The D-A equation(n=1) provides the best fit.By comparing the calculated specific surface area of the BET equation and the mercury intrusion method,it is found that micropore adsorption of CO2 occupies a dominant position.
基金Supported by the National Natural Science Foundation of China(No.29936100)and the National Science Foundation ofGuangdong Province(No.990629).
文摘A method named as 'volume-expanding and pressure-reducing adsorption' is proposed. It can be used to measure the isotherms under supercritical condition. The adsorption isotherms of phenol on activated carbons and polymeric adsorbents are estimated and compared respectively for the systems of 'phenol-activated carbon-supercritical fluid CO2' and 'phenol-polymeric adsorbent-supercritical fluid CO2'. The results show that the amount of phenol adsorbed on the activated carbons and the polymeric adsorbents under the supercritical condition is much less than that under the general condition, which can be utilized to develop a technology regenerating the activated carbon with supercritical fluid. Moreover, the effects of ethyl alcohol, used as the third component, on the isotherms of phenol on the activated carbons and polymeric adsorbents under the supercritical condition are also investigated.
基金supported by Liaoning Provincial Natural Science Foundation of China(201202028)the National Program on the Key Basic Research Project(No.2011CB707304)+1 种基金the National Natural Science Foundation of China(No.51006016)the China Scholarship Council
文摘It is important to quantitatively understand the methane adsorption and transport mechanism in coal for an evaluation of the reserves and for its production forecast. In this work, a block coal sample was chosen to perform the CH_4 adsorption experiments using the gravimetric method at temperatures of 293.60 K, 311.26 K, 332.98 K and 352.55 K and pressures up to 19 MPa. The excess adsorption capacity of CH_4 in dry block anthracite increased, followed by a sequence decrease with the increasing pressure. High temperature restrained the growth of the excess adsorption due to that the adsorption is an intrinsically physical and exothermic process. The excess adsorption peak decreased slowly with the increase of temperature and intersected at a pressure of more than 18 MPa; meanwhile, the pressure at the excess adsorption peak increased. The existing correlations were exanfined in terms of density rather than pressure. The DR+k correlation, with an average relative deviation of 4-0.51%, fitted our data better than the others, with an average relative deviation of up to 2.29%. The transportation characteristics of CH_4 adsorption was also investigated in this study, including the adsorption rate and diffusion in block coal. The kinetic data could be described by a modified unipore model. The adsorption rates were found to exhibit dependence on pressure and temperature at low pressures, while the calculated diffusivities exhibited little temperature dependence. In addition, the kinetic characteristics were compared between CH_4 and CO_2 adsorption on the block coal. The excess adsorption ratios of CO_2 to CH_4 obtained from the DR+k model decreased with the increasing pressure.
文摘This research proposes a modified two-dimensional Peng-Robinson equation model to predict adsorption isotherm in adsorbate-adsorbent systems. The parameters of the proposed model are calculated by using the optimization of experimental data for the different single gas adsorption systems at various temperatures. The experimental adsorption equilibrium data of adsorbate-adsorbent systems was compared with the calculated results in our proposed model and the two-dimensional Hill-deBoer equation model. The proposed model as indicated in the results shows a better prediction of the experimental results compared with two others.
基金the National Natural Science Foundation of China(2117613621422603)the National Science and Technology Support Program of China(2011BAC06B01)
文摘In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.
基金Project(51008106)supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.
基金Research Fund for Introduced High-Level Talents of North China University of Water Resources and Electric Power,ChinaResearch Fund for Key Scientific Project of Education Department of Henan Province,China(No.13B560114)Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao,China(No.51328803)
文摘Alum sludge (AS) is a world-wide by-product generated in the drinking water treatment process when aluminum salts are used as coagulant. Its high AI content makes it a potential adsorbent for flouride removal from water. A high performance adsorbent was fabricated via heat treatment of AS and batch adsorption experiments were carried out to investigate its flouride adosroption performance. The results indicated that AS treated at 300℃ (AS300) for 1 h had the highest adsorption capacity for fluoride (52.9% fluoride removal). The adsorption of fluoride by AS300 fitted better the Langmuir isotherm model than the Freundlich model. The maximum fluoride adsorption capacity of AS300 increased from 4.0 to 9.3 mg/g sludge when reaction temperature increased from 15 to 35 ℃. Thermodynamic parameters showed that the adsorption of fluoride by AS was spontaneous and endothermie. Hence higher temperature was favorable for fluoride adsorption. The adsorption process followed the pseudo-second-order equation. In addition, the fluoride adsorption on AS300 decreased from 4.3 to 2.5 mg/g sludge when the solution initial pH increased from 4.0 to 9.0, which meant that adsorption capacity was greatly dependent upon the initial pH of the solution. The results provide new insight into the resource utilization of AS for fluoride removal.
基金Natural Science Foundation of Guangdong Province (No. 36566)
文摘The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution,
文摘This study investigated <i>Bacillus subtilis</i> ATCC13952 as an adsorbent for arsenic in groundwater. Batch experiments were used to determine the effect of contact time, adsorbent dose, arsenic (III) concentration, pH, and temperature on the process. The percentage of arsenic (III) removed was high at a contact time of four days, 3.0 mL of <i>Bacillus subtilis</i> ATCC13952, pH 8 and temperature of 35°C. The kinetics of the process showed the Elovich kinetics model as the best fit for the process. This indicates that arsenic removal was by chemisorption. The analysis of the nonlinear equilibrium isotherms and the error functions showed the Langmuir isotherm as best fit for the process. Mechanistic study of the process indicated bulk diffusion to be the rate-determining step. Thermodynamically, the process was favourable, spontaneous and feasible. When the community water samples were treated with the <i>Bacillus subtilis</i> ATCC13952 at the optimum contact time, adsorbent dose, pH and temperature, 99.96% - 99.97% of arsenic was removed across all sampling points within the studied communities. Hence, the results show that <i>Bacillus subtilis</i> ATCC13952 is an efficient adsorbent for arsenic in aqueous systems and the organism appears to hold the key to purging the environment of arsenic contamination.
文摘Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established.
文摘The objective of this research was to enhance adsorption capacity of Acacia nilotica (keekar) sawdust for the abatement of chromium bearing wastewater and to investigate the effect of process parameters on adsorption capacity. The sawdust was activated by acid wash and functionalized subsequently with formaldehyde. Functionalization of activated sawdust raised its chromium removal efficiency of almost 10% as compared to its adsorption removal efficiency of HCl treated sawdust in a batch adsorption study. Adsorption kinetic data provided better fitting with pseudo second order model. Maximum adsorption capacity calculated through the best fitting Langmuir model was 6.34 mg·g^-1 and 8.2 mg·g^-1 for HCl treated and formaldehyde functionalized sawdust adsorbents, respectively. The adsorption of Cr(VI) was endothermic when studied by varying temperature from 20℃ to 50℃ for both activated and functionalized adsorbents.
基金Supported by the Center for Advanced Bioseparation Technology and the Postdoctoral Program of Inha University.
文摘A molecular imprinted polymer(MIP) was prepared with quereetin as the template and methaerylie acid(MAA) as the functional monomer. Aeetonitrile and methanol were used as the porogen with ethylene glycol dimethaerylate (EGDMA) as the erosslinker and 2,2'-azobis ( isobutyronitrile ) ( AIBN ) as the initiator. The experimental parameters of the equilibrium isotherms were estimated via linear and nonlinear regression analyses. The linear equadon as the functions of the adsorption concentration of the single compound in its solution and the competitive adsorption of the single compound in its mixed compounds solution was then expressed, and the adsorption equilibrium data were correlated to Langmuir and Freundlich isotherm models. The mixture compounds show competitive adsorption on the specific binding sites of quereetin-MIP. Furthermore, the competitive Langmnir isotherms were applied to the mixture compounds. The adsorption concentrations of quercetin, (+)eatechin(+C), and (-)epieateehin(EC) on the quercetin molecular imprinted polymer were compared. The quercetin-imprinted polymer shows extraordinarily higher adsorption ability for quercetin than for the two eateehin compounds that were also assessed.
文摘Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were adopted in reversed-phase high performance liguid chromatography (RP-HPLC). In FA, the concentration of stationary phase was measured from the elution curves and the isotherm was deter-mined by regression analysis, while the parameters by ECM were obtained by parameter optimization. The adsorption isotherms of thymidine from the two methods were very similar. The superiority of ECM over FA was that the consumption of sample was less and only one or two in-jections of sample were required.
基金Supported by the Basic Science Research Program Through the National Research Foundation(NRF) of Korea funded by the Ministry of Education, Science and Technology(No.2010-0015731)
文摘A comparison of the adsorption isotherms of caffeine, theophylline and theobromine and the competitive adsorption of the three compounds on a C18 column were investigated. The experimental parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation as a function of the adsorption concentration of the single compound in its solution and the competitive adsorption of a single compound in a mixed solution were then determined. The adsorption equilibrium data were then correlated to the linear, Langmuir, Freundlich, Langmuir-Freundlich and stoichiometric displacement theory for adsorption(SDT-A) isotherm models. The mixed compounds of the three compounds were competitively adsorbed on the C18 particles. The expression of stoichiometric displacement theory for adsorption was found to be more suitable for adsorption of methylxanthines on a C18 column.