Grey relational analysis is one of the most important methods in water quality evaluation system. As the traditional grey relational analysis has the defects of homogenization in static resolution ratio, small discrim...Grey relational analysis is one of the most important methods in water quality evaluation system. As the traditional grey relational analysis has the defects of homogenization in static resolution ratio, small discrimination in correlation degree, and low precision in the weight of impact factors, this paper proposed an advanced grey relational analysis that used dynamic resolution ratio and comprehensive evaluation indicators. This method has been applied in the MIS software which monitors and evaluates the water quality in the lakes of the Four-Lake Basin. Compared with the traditional grey relational analysis and the cluster-factor analysis, this method could effectively enhance the reliability and accuracy of the results.展开更多
Estimation of shear strength and other mechanical characteristics of masonry wall panels through experimental research is the most reliable analysis approach. However, considering all the difficulties in performing ex...Estimation of shear strength and other mechanical characteristics of masonry wall panels through experimental research is the most reliable analysis approach. However, considering all the difficulties in performing experimental research, material costs, laboratory preparations and time expenses, it is not difficult to conclude that this approach is also not the most rational. Aside from experimental investigations, advanced analytical methods are considered cheaper and practical, which can approximately describe the mechanical behavior of masonry walls. The aim of this chapter is to demonstrate how advanced analytical methods, based on discrete and applied element methods, are capable of estimating, in close approximation, the realistic behavior of masonry walls. The use of advanced analysis methods for determination of the behavior of full-scaled masonry walls (with and without openings), avails the inclusion of infill masonry walls on the processes of modeling, analysis and design of building structures, without the need of extensive experimental investigations. This would result in achieving more approximate analytical building models in respect to their realistic behavior and ultimately achieve better optimization of structural design.展开更多
Objective: To describe the revolution and research status of Advances in Psychological Science. Methods: A total of 3060 articles published in Advances in Psychological Science from 1983 to 2014 were analyzed with t...Objective: To describe the revolution and research status of Advances in Psychological Science. Methods: A total of 3060 articles published in Advances in Psychological Science from 1983 to 2014 were analyzed with the information visualization method using Citespace software from the aspects of pub- lications, cited frequency and downloads, funding, organizations, authors and keywords. Results: The results showed that the amount of literature published annually had an upward tendency, and 49.4% of the papers were supported by national or provincial projects. Institutions such as the Chinese Academy of Sciences (CAS) and the normal universities were rated in the forefront of the sci- entific research output. Xiting Huang, Hong Li and Yuejia Luo were at the top of the list of prolific authors. Conclusions: A new pattern of cooperative development of the theory and application in the field of psychological research is forming.展开更多
The year of 2017 is of historic importance for China. It was the year that China started to step into New Period. It was also the year that I had joined Wuhan University as a Luojia professor and set up my research gr...The year of 2017 is of historic importance for China. It was the year that China started to step into New Period. It was also the year that I had joined Wuhan University as a Luojia professor and set up my research group for ten years since I came back to China from University of Notre Dame, United States in 2007.展开更多
Neuronal regeneration in the peripheral nervous system arises via a synergistic interplay of neurotrophic factors,integrins,cytoskeletal proteins,mechanical cues,cytokines,stem cells,glial cells and astrocytes.
The construction of the North Square Shopping Center of the Shanghai South Railway Station is a large scale complex top-down deep excavation project. The excavation is adjacent to several current and newly planned Met...The construction of the North Square Shopping Center of the Shanghai South Railway Station is a large scale complex top-down deep excavation project. The excavation is adjacent to several current and newly planned Metro lines, and influenced by a neighboring Exchange Station excavation. The highly irregular geometry of this excavation greatly increases the complexity in 3D Finite Element modeling. The advanced numerical modeling described in this paper includes detailed structural and geotechnical behavior. Important features are considered in the analysis, e.g., 1) the small-strain stiffness of the soil, 2) the construction joints in the diaphragm wall, 3) the shrinkage in the concrete floor slabs and beams, 4) the complex construction sequences, and 5) the shape effect of the deep excavation. The numerical results agree well with the field data, and some valuable conclusions are generated.展开更多
Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement tec...Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement technology that can effectively improve the performance of the heat exchanger as well as the system.In this paper,a regular air-conditioning system as the baseline(system-A)and other two air-conditioning systems with liquid-vapor separation heat exchanger(system-B and system-C)are comparatively studied.The component behaviors and system performances are deeply explored by using advanced exergy analysis with a focus on quantifying how much consequences come from the variants,i.e.liquid-vapor separation.The results indicate that the system-B has large reduced exergy destruction from the compressor and condenser at cooling mode relative to the system-A.The system-C has mainly diminished exergy destruction in the compressor caused by other components relative to the system-B.At heating mode,the system-C has an enhanced system exergy efficiency of 9.6%over the system-A,and it also has the decreased avoidable exergy destruction which is dominantly contributed by the compressor and evaporator.Furthermore,it is found that liquid-vapor separation mainly benefits the compressor and outdoor heat exchanger where it locates,leading to the system performance improvements.展开更多
At present,the dual-loop organic Rankine cycle(DORC)is regarded as an important solution to engine waste heat recovery(WHR).Compared with the conventional exergy analysis,the advanced exergy analysis can better descri...At present,the dual-loop organic Rankine cycle(DORC)is regarded as an important solution to engine waste heat recovery(WHR).Compared with the conventional exergy analysis,the advanced exergy analysis can better describe the interactions between system components and the irreversibility caused by economic or technical limitations.In order to systematically study the thermodynamic performance of DORC,the conventional and advanced exergy analyses are compared using an inline 6-cylinder 4-stroke turbocharged diesel engine.Meanwhile,the sensitivity analysis is implemented to further investigate the influence of operating parameters on avoidable-endogenous exergy destruction.The analysis result of conventional exergy analysis demonstrates that the priorities for the components that should be improved are in order of the high-temperature evaporator,the low-temperature turbine,the first low-temperature evaporator and the high-temperature condenser.The advanced exergy analysis result suggests that the avoidable exergy destruction values are the highest in the low-temperature turbine,the high-temperature evaporator and the high-temperature turbine because they have considerable endogenous-avoidable exergy destruction.The sensitivity analysis indicates that reducing the evaporation pinch point and raising the turbine efficiency can decrease the avoidable exergy destruction.展开更多
Regarding interest in and concerns about high efficiency in recent times,an irreversibility assessment of energy conversion systems is significant.Turbojets,a type of energy conversion system,are widely used to provid...Regarding interest in and concerns about high efficiency in recent times,an irreversibility assessment of energy conversion systems is significant.Turbojets,a type of energy conversion system,are widely used to provide thrust for aerial vehicles,such as military aircraft missiles,commercial aircraft and so on.From this point of view,the current study aims to introduce a comprehensive irreversibility assessment methodology exemplification for a turbojet.First of all,a basic irreversibility assessment methodology is explained with an application.Following this,a comprehensive assessment is performed.Within this framework,a number of a novel measures are defined by derivations in addition to previously well-known indicators.These measures are beneficial for the decomposition of the irreversibility in a turbojet and its components.At the end of the study,the highest endogenous irreversibility is determined to be in the turbine component of the turbojet engine whereas the highest avoidable irreversibility is found to be in the compressor component of the turbojet engine.The current paper is considered to be of use for researchers and scientists interested in aero-engine performance,thermal engineering and aerospace engineering.展开更多
This paper presents an AES(advanced encryption standard) chip that combats differential power analysis (DPA) side-channel attack through hardware-based random order execution.Both decryption and encryption procedu...This paper presents an AES(advanced encryption standard) chip that combats differential power analysis (DPA) side-channel attack through hardware-based random order execution.Both decryption and encryption procedures of an AES are implemented on the chip.A fine-grained dataflow architecture is proposed,which dynamically exploits intrinsic byte-level independence in the algorithm.A novel circuit called an HMF(Hold-MatchFetch) unit is proposed for random control,which randomly sets execution orders for concurrent operations.The AES chip was manufactured in SMIC 0.18μm technology.The average energy for encrypting one group of plain texts(128 bits secrete keys) is 19 nJ.The core area is 0.43 mm^2.A sophisticated experimental setup was built to test the DPA resistance.Measurement-based experimental results show that one byte of a secret key cannot be disclosed from our chip under random mode after 64000 power traces were used in the DPA attack.Compared with the corresponding fixed order execution,the hardware based random order execution is improved by at least 21 times the DPA resistance.展开更多
基金Supported by Natural Science Foundation of China(41372155)
文摘Grey relational analysis is one of the most important methods in water quality evaluation system. As the traditional grey relational analysis has the defects of homogenization in static resolution ratio, small discrimination in correlation degree, and low precision in the weight of impact factors, this paper proposed an advanced grey relational analysis that used dynamic resolution ratio and comprehensive evaluation indicators. This method has been applied in the MIS software which monitors and evaluates the water quality in the lakes of the Four-Lake Basin. Compared with the traditional grey relational analysis and the cluster-factor analysis, this method could effectively enhance the reliability and accuracy of the results.
文摘Estimation of shear strength and other mechanical characteristics of masonry wall panels through experimental research is the most reliable analysis approach. However, considering all the difficulties in performing experimental research, material costs, laboratory preparations and time expenses, it is not difficult to conclude that this approach is also not the most rational. Aside from experimental investigations, advanced analytical methods are considered cheaper and practical, which can approximately describe the mechanical behavior of masonry walls. The aim of this chapter is to demonstrate how advanced analytical methods, based on discrete and applied element methods, are capable of estimating, in close approximation, the realistic behavior of masonry walls. The use of advanced analysis methods for determination of the behavior of full-scaled masonry walls (with and without openings), avails the inclusion of infill masonry walls on the processes of modeling, analysis and design of building structures, without the need of extensive experimental investigations. This would result in achieving more approximate analytical building models in respect to their realistic behavior and ultimately achieve better optimization of structural design.
基金supported by MOE(Ministry of Education of China)the research projects of Humanities and Social Sciences(No.13YJCZH239)Project of innovation and entrepreneurship for undergraduates in Shanxi Medical University(No.20160311)
文摘Objective: To describe the revolution and research status of Advances in Psychological Science. Methods: A total of 3060 articles published in Advances in Psychological Science from 1983 to 2014 were analyzed with the information visualization method using Citespace software from the aspects of pub- lications, cited frequency and downloads, funding, organizations, authors and keywords. Results: The results showed that the amount of literature published annually had an upward tendency, and 49.4% of the papers were supported by national or provincial projects. Institutions such as the Chinese Academy of Sciences (CAS) and the normal universities were rated in the forefront of the sci- entific research output. Xiting Huang, Hong Li and Yuejia Luo were at the top of the list of prolific authors. Conclusions: A new pattern of cooperative development of the theory and application in the field of psychological research is forming.
文摘The year of 2017 is of historic importance for China. It was the year that China started to step into New Period. It was also the year that I had joined Wuhan University as a Luojia professor and set up my research group for ten years since I came back to China from University of Notre Dame, United States in 2007.
基金CSIRO, the ARC and the NHMRC for providing funding that supported this work
文摘Neuronal regeneration in the peripheral nervous system arises via a synergistic interplay of neurotrophic factors,integrins,cytoskeletal proteins,mechanical cues,cytokines,stem cells,glial cells and astrocytes.
文摘The construction of the North Square Shopping Center of the Shanghai South Railway Station is a large scale complex top-down deep excavation project. The excavation is adjacent to several current and newly planned Metro lines, and influenced by a neighboring Exchange Station excavation. The highly irregular geometry of this excavation greatly increases the complexity in 3D Finite Element modeling. The advanced numerical modeling described in this paper includes detailed structural and geotechnical behavior. Important features are considered in the analysis, e.g., 1) the small-strain stiffness of the soil, 2) the construction joints in the diaphragm wall, 3) the shrinkage in the concrete floor slabs and beams, 4) the complex construction sequences, and 5) the shape effect of the deep excavation. The numerical results agree well with the field data, and some valuable conclusions are generated.
基金supported by State Key Program of National Natural Science Foundation of China(51736005)Science and Technology Program of Guangzhou(201704030108)+1 种基金Foshan Municipal Science and Technology Bureau Project(2015IT100162)Guangdong Special Support Program(2017TX04N371)。
文摘Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement technology that can effectively improve the performance of the heat exchanger as well as the system.In this paper,a regular air-conditioning system as the baseline(system-A)and other two air-conditioning systems with liquid-vapor separation heat exchanger(system-B and system-C)are comparatively studied.The component behaviors and system performances are deeply explored by using advanced exergy analysis with a focus on quantifying how much consequences come from the variants,i.e.liquid-vapor separation.The results indicate that the system-B has large reduced exergy destruction from the compressor and condenser at cooling mode relative to the system-A.The system-C has mainly diminished exergy destruction in the compressor caused by other components relative to the system-B.At heating mode,the system-C has an enhanced system exergy efficiency of 9.6%over the system-A,and it also has the decreased avoidable exergy destruction which is dominantly contributed by the compressor and evaporator.Furthermore,it is found that liquid-vapor separation mainly benefits the compressor and outdoor heat exchanger where it locates,leading to the system performance improvements.
基金supported by the Science and Technology Major Project of Tibet of China(Grant No.XZ201801-GA-03)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ2399)。
文摘At present,the dual-loop organic Rankine cycle(DORC)is regarded as an important solution to engine waste heat recovery(WHR).Compared with the conventional exergy analysis,the advanced exergy analysis can better describe the interactions between system components and the irreversibility caused by economic or technical limitations.In order to systematically study the thermodynamic performance of DORC,the conventional and advanced exergy analyses are compared using an inline 6-cylinder 4-stroke turbocharged diesel engine.Meanwhile,the sensitivity analysis is implemented to further investigate the influence of operating parameters on avoidable-endogenous exergy destruction.The analysis result of conventional exergy analysis demonstrates that the priorities for the components that should be improved are in order of the high-temperature evaporator,the low-temperature turbine,the first low-temperature evaporator and the high-temperature condenser.The advanced exergy analysis result suggests that the avoidable exergy destruction values are the highest in the low-temperature turbine,the high-temperature evaporator and the high-temperature turbine because they have considerable endogenous-avoidable exergy destruction.The sensitivity analysis indicates that reducing the evaporation pinch point and raising the turbine efficiency can decrease the avoidable exergy destruction.
文摘Regarding interest in and concerns about high efficiency in recent times,an irreversibility assessment of energy conversion systems is significant.Turbojets,a type of energy conversion system,are widely used to provide thrust for aerial vehicles,such as military aircraft missiles,commercial aircraft and so on.From this point of view,the current study aims to introduce a comprehensive irreversibility assessment methodology exemplification for a turbojet.First of all,a basic irreversibility assessment methodology is explained with an application.Following this,a comprehensive assessment is performed.Within this framework,a number of a novel measures are defined by derivations in addition to previously well-known indicators.These measures are beneficial for the decomposition of the irreversibility in a turbojet and its components.At the end of the study,the highest endogenous irreversibility is determined to be in the turbine component of the turbojet engine whereas the highest avoidable irreversibility is found to be in the compressor component of the turbojet engine.The current paper is considered to be of use for researchers and scientists interested in aero-engine performance,thermal engineering and aerospace engineering.
基金supported by the National Natural Science Foundation of China(No.61006021)the Beijing Natural Science Foundation(No. 4112029)
文摘This paper presents an AES(advanced encryption standard) chip that combats differential power analysis (DPA) side-channel attack through hardware-based random order execution.Both decryption and encryption procedures of an AES are implemented on the chip.A fine-grained dataflow architecture is proposed,which dynamically exploits intrinsic byte-level independence in the algorithm.A novel circuit called an HMF(Hold-MatchFetch) unit is proposed for random control,which randomly sets execution orders for concurrent operations.The AES chip was manufactured in SMIC 0.18μm technology.The average energy for encrypting one group of plain texts(128 bits secrete keys) is 19 nJ.The core area is 0.43 mm^2.A sophisticated experimental setup was built to test the DPA resistance.Measurement-based experimental results show that one byte of a secret key cannot be disclosed from our chip under random mode after 64000 power traces were used in the DPA attack.Compared with the corresponding fixed order execution,the hardware based random order execution is improved by at least 21 times the DPA resistance.