A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequenc...A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.展开更多
x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit...x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit for real-time encoding application of high resolution video. This paper analyses the character of aerial video and then opti-mizes the inter-frame mode decision and motion estimation in x264 codec according to its character by reducing a lot of unnecessary computation. In the result, about 19% computation and encoding time is reduced with total bits and PSNR decreasing lightly.展开更多
In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal...In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object's appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
文摘A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.
文摘x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit for real-time encoding application of high resolution video. This paper analyses the character of aerial video and then opti-mizes the inter-frame mode decision and motion estimation in x264 codec according to its character by reducing a lot of unnecessary computation. In the result, about 19% computation and encoding time is reduced with total bits and PSNR decreasing lightly.
基金co-supported by the National Natural Science Foundation of China (Nos.61005028,61175032,and 61101222)
文摘In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object's appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.