The primary wind of a low-NO_x coaxial swirling burner was visualized byusing glycol as smog tracer. The information of the visual flow field was input into a computerthrough image-capturing card with CCD camera as th...The primary wind of a low-NO_x coaxial swirling burner was visualized byusing glycol as smog tracer. The information of the visual flow field was input into a computerthrough image-capturing card with CCD camera as the image-capturing element. The boundary of thevisual zone, i. e. , the interface of the primary wind and secondary wind was obtained by imageprocessing. The fractal dimension (FD) of the boundary was examined and found to vary from 1. 10 to1. 40 with S_1, S_2 and ζ_1 . It is concluded that when FD is small, the complex level of theinterface is low, and mixture between the primary and secondary wind is weak near the exit of theburner at the initial phase of combustion resulting in stratified flow; when FD is big, mixturebecomes strong near the exit of the burner. It is showed that the flow with FD ranging from 1.10 to1. 20 is stratified flow, which is benefical to reduce NO_x yield and the flow with FD from 1. 25 to1. 40 is mixed flow, producing much NO_x. The mechanism of the forming of stratified flow and mixedflow was theoretically analyzed. The corresponding S_1 , S_2 and ζ_1 of these flows were given.展开更多
In this paper, the effect of the imaginary circle diameter opi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experiments in the cold model....In this paper, the effect of the imaginary circle diameter opi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experiments in the cold model. Results show that merely reducing the imaginary circle diameter rki can not significantly reduce the rotatiollal diameter op in the range considered. The flow still rotates coullter-clockwise stably and does not change rotation direction when the direction of all jet axes are defiected suddenly to the opposite rotation direction by up to 5.4" in a countereclockwise llow field. It is the first time that the numerical sAnulation results were obtained which agreed quite well with this experimental phenomena qualitatively. The experimental data, i.e., the rotational diameter & and the maximum velocity on the syrnmetric central line of fUrnace Vm, are only a bit larger than the simulation results. It is shown that the initial flow field has an important influence on the aerodynamic field in the furnace. Other measures have to be taken as wel1 in order to reduce & to resist slagging and high temperature corrosion of furnace tubes. Moreover, a new kind of grid arrangement was proposed in this paper, which can reduce effectively the false diffosion at the exit zone of burner.展开更多
The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal ...The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (p2s..v2s2./p1v12) is between 1.0-2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When p2sv2s2/p1v12 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.展开更多
A new vortex sheet model was proposed for simulating aircraft wake vortex evolution.Rather than beginning with a pair of counter-rotating cylindrical vortices as in the traditional models, a lift-drag method is used t...A new vortex sheet model was proposed for simulating aircraft wake vortex evolution.Rather than beginning with a pair of counter-rotating cylindrical vortices as in the traditional models, a lift-drag method is used to initialize a vortex sheet so that the roll-up phase is taken into account. The results of this model report a better approximation to a real situation when compared to the measurement data. The roll-up induced structures are proved to influence the far-field decay.On one hand, they lead to an early decay in the diffusion phase. On the other hand, the growth of linear instability such as elliptical instability is suppressed, resulting in a slower decay in the rapid decay phase. This work provides a simple and practicable model for simulating wake vortex evolution, which combines the roll-up process and the far-field phase in simulation. It is also proved that the roll-up phase should not be ignored when simulating the far-field evolution of an aircraft wake vortex pair, which indicates the necessity of this new model.展开更多
文摘The primary wind of a low-NO_x coaxial swirling burner was visualized byusing glycol as smog tracer. The information of the visual flow field was input into a computerthrough image-capturing card with CCD camera as the image-capturing element. The boundary of thevisual zone, i. e. , the interface of the primary wind and secondary wind was obtained by imageprocessing. The fractal dimension (FD) of the boundary was examined and found to vary from 1. 10 to1. 40 with S_1, S_2 and ζ_1 . It is concluded that when FD is small, the complex level of theinterface is low, and mixture between the primary and secondary wind is weak near the exit of theburner at the initial phase of combustion resulting in stratified flow; when FD is big, mixturebecomes strong near the exit of the burner. It is showed that the flow with FD ranging from 1.10 to1. 20 is stratified flow, which is benefical to reduce NO_x yield and the flow with FD from 1. 25 to1. 40 is mixed flow, producing much NO_x. The mechanism of the forming of stratified flow and mixedflow was theoretically analyzed. The corresponding S_1 , S_2 and ζ_1 of these flows were given.
文摘In this paper, the effect of the imaginary circle diameter opi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experiments in the cold model. Results show that merely reducing the imaginary circle diameter rki can not significantly reduce the rotatiollal diameter op in the range considered. The flow still rotates coullter-clockwise stably and does not change rotation direction when the direction of all jet axes are defiected suddenly to the opposite rotation direction by up to 5.4" in a countereclockwise llow field. It is the first time that the numerical sAnulation results were obtained which agreed quite well with this experimental phenomena qualitatively. The experimental data, i.e., the rotational diameter & and the maximum velocity on the syrnmetric central line of fUrnace Vm, are only a bit larger than the simulation results. It is shown that the initial flow field has an important influence on the aerodynamic field in the furnace. Other measures have to be taken as wel1 in order to reduce & to resist slagging and high temperature corrosion of furnace tubes. Moreover, a new kind of grid arrangement was proposed in this paper, which can reduce effectively the false diffosion at the exit zone of burner.
文摘The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (p2s..v2s2./p1v12) is between 1.0-2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When p2sv2s2/p1v12 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.
基金supported by the Boeing-COMAC Aviation Energy Conservation and Emissions Reduction Technology Center (AECER)
文摘A new vortex sheet model was proposed for simulating aircraft wake vortex evolution.Rather than beginning with a pair of counter-rotating cylindrical vortices as in the traditional models, a lift-drag method is used to initialize a vortex sheet so that the roll-up phase is taken into account. The results of this model report a better approximation to a real situation when compared to the measurement data. The roll-up induced structures are proved to influence the far-field decay.On one hand, they lead to an early decay in the diffusion phase. On the other hand, the growth of linear instability such as elliptical instability is suppressed, resulting in a slower decay in the rapid decay phase. This work provides a simple and practicable model for simulating wake vortex evolution, which combines the roll-up process and the far-field phase in simulation. It is also proved that the roll-up phase should not be ignored when simulating the far-field evolution of an aircraft wake vortex pair, which indicates the necessity of this new model.