期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Changes in Aerosol Optical Depth over the Arctic Ocean as Seen by CALIOP, MAIAC, and MODIS C6.1
1
作者 Nicole Mölders Mariel Friberg 《Journal of Environmental Protection》 2023年第6期419-440,共22页
Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Mult... Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire. 展开更多
关键词 Arctic aerosol optical depth Changes in aerosol optical depth Arctic Ship-Emissions Impacts on AOD Boreal Wildfire Impacts on AOD
下载PDF
Using MAN and Coastal AERONET Measurements to Assess the Suitability of MODIS C6.1 Aerosol Optical Depth for Monitoring Changes from Increased Arctic Shipping
2
作者 Nicole Mölders Mariel Friberg 《Open Journal of Air Pollution》 2020年第4期77-104,共28页
Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol o... Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span> 展开更多
关键词 aerosol optical depth over the Arctic Ocean MODIS Evaluation by AERONET and MAN Data Changes in Arctic aerosol optical depth over the Ocean North of 59.9°N Arctic Shipping Season aerosol optical depths
下载PDF
Spike in phytoplankton biomass in Greenland Sea during 2009 and the correlations among chlorophyll-a,aerosol optical depth and ice cover 被引量:3
3
作者 瞿波 Albert J. GABRIC +1 位作者 路海浪 林道荣 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第2期241-254,共14页
The distributions and correlations of chlorophyll-a(Chl-a),aerosol optical depth(AOD)and ice cover in the southeast Arctic Ocean-Greenland Sea(10°W–10°E,70°–80°N)between 2003 and 2009 were studie... The distributions and correlations of chlorophyll-a(Chl-a),aerosol optical depth(AOD)and ice cover in the southeast Arctic Ocean-Greenland Sea(10°W–10°E,70°–80°N)between 2003 and 2009 were studied using satellite data and statistical analyses.Regression analysis showed correlations between Chl-a and AOD,Chl-a and ice cover,and AOD and ice cover with different time lags.The time lag of Chl-a and AOD indicated their long-term equilibrium relationship.Peaks in AOD and Chl-a and generally occurred in May and July,respectively.Despite the time lag,the correlation between Chl-a and AOD in the study region was as high as 0.7.The peak gap between Chl-a and AOD shifted for about 6 weeks during 2003–2009.In the summer and autumn of 2009,Chl-a and AOD levels were much higher than during the other years,especially in the northern band of the study region(75°–80°N).The driving forces for this localized increase in phytoplankton biomass could be mainly attributed to the very high rate of ice melting in spring and early summer and the high wind speed in autumn,together with the increased deposition of aerosol throughout the year.The unusually high AOD in the spring of 2003 was mainly due to a massive fi re in Russia,which occurred in the fi rst half of the year.Over the 7 years of the study,the sea surface temperature generally decreased.This may have been due to the release of dimethylsulfi de into the air,excreted in large amounts from abundant phytoplankton biomass,and its subsequent reaction,form large amounts of aerosol,and resulting in regional cooling. 展开更多
关键词 phytoplankton biomass aerosol optical depth (AOD) ice cover wind speed Arctic Ocean
下载PDF
The relationships among aerosol optical depth, ice, phytoplankton and dimethylsulfide and the implication for future climate in the Greenland Sea 被引量:4
4
作者 QU Bo GABRIC Albert J. +5 位作者 ZHAO Li SUN Wenjing LI Hehe GU Peijuan JIANG Limei ZENG Meifang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第5期13-21,共9页
The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol o... The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol optical depth(AOD) is used as a proxy for aerosol burden which is dominated by biogenic aerosol during summer and autumn. The spring sea ice melt period is a strong source of aerosol precursors in the Arctic. However, high aerosol levels in early spring are likely related to advection of continental pollution from the south(Arctic haze).Higher AOD was generally registered in the southern part of the study region. Sea ice concentration(SIC) and AOD were positively correlated, while cloud cover(CLD) and AOD were negative correlation. The seasonal peaks of SIC and CLD were both one month ahead of the peak in AOD. There is a strong positive correlation between AOD and SIC. Melting ice is positively correlated with chlorophyll a(CHL) almost through March to September,but negatively correlated with AOD in spring and early summer. Elevated spring and early summer AOD most likely were influenced by combination of melting ice and higher spring wind in the region. The peak of DMS flux occurred in spring due to the elevated spring wind and more melting ice. DMS concentration and AOD were positively correlated with melting ice from March to May. Elevated AOD in early autumn was likely related to the emission of biogenic aerosols associated with phytoplankton synthesis of DMS. The DMS flux would increase more than triple by 2100 in the Greenland Sea. The significant increase of biogenic aerosols could offset the warming in the Greenland Sea. 展开更多
关键词 dimethylsulfide flux sea ice chlorophyll aerosol optical depth Greenland Sea
下载PDF
Modeling Study of the Impact of Heterogeneous Reactions on Dust Surfaces on Aerosol Optical Depth and Direct Radiative Forcing over East Asia in Springtime 被引量:1
5
作者 LI Jia-Wei HAN Zhi-Wei 《Atmospheric and Oceanic Science Letters》 2011年第6期309-315,共7页
The spatial distributions and interannual variations of aerosol concentrations, aerosol optical depth (AOD), aerosol direct radiative forcings, and their responses to heterogeneous reactions on dust surfaces over Ea... The spatial distributions and interannual variations of aerosol concentrations, aerosol optical depth (AOD), aerosol direct radiative forcings, and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations (inorganic + carbonaceous) were higher in March 2006 and 2008, whereas soil dust reached its highest levels in March 2006 and 2010, resulting in stronger aerosol radiative forcings in these periods. The domain and five-year (2006-10) monthly mean concentrations of anthropogenic and dust aerosols, AOD, and radiative forcings at the surface (SURF) and at the top of the atmosphere (TOA) in March were 2.4 μg m 3 13.1 lag m^-3, 0.18, -19.0 W m^-2, and -7.4 W m^-2, respectively. Heterogeneous reactions led to an increase of total inorganic aerosol concentration; however, the ambient inorganic aerosol concentration decreased, resulting in a smaller AOD and weaker aerosol radiative forcings. In March 2006 and 2010, the changes in ambient inorganic aerosols, AOD, and aerosol radiative forcings were more evident. In terms of the domain and five-year averages, the total inorganic aerosol concentrations increased by 13.7% (0.17 μg m^-3) due to heterogeneous reactions, but the ambient inorganic aerosol concentrations were reduced by 10.5% (0.13 lag m-3). As a result, the changes in AOD, SURF and TOA radiative forcings were estimated to be -3.9% (-0.007), -1.7% (0.34 W m^-2), and -4.3% (0.34 W m^-2), respectively, in March over East Asia. 展开更多
关键词 heterogeneous reaction aerosol concentra- tion aerosol optical depth radiative forcing East Asia
下载PDF
Determining the environmental and atmospheric effects of coronavirus disease 2019(COVID-19)quarantining by studying the total aerosol optical depth,black carbon,organic matter,and sulfate in Blida City of Algeria 被引量:1
6
作者 Foued Chabane Ali Arif 《Global Health Journal》 2021年第1期37-43,共7页
Background:To study,estimate and discuss the variations of the aerosol optical depth(AOD),black carbon,sulfate and organic matter,in the atmosphere in Blida City of Algeria,which was greatly affected by COVID-19 pande... Background:To study,estimate and discuss the variations of the aerosol optical depth(AOD),black carbon,sulfate and organic matter,in the atmosphere in Blida City of Algeria,which was greatly affected by COVID-19 pandemic.Methods:We analyzed the effects of changes in the total AOD,black carbon,sulfate,and organic matter in the atmosphere(λ=550 nm)in the same period of 2019 and 2020,following the COVID-19 epidemic in Blida City,which was the most-affected city in Algeria.Results:The quarantine that was enacted to limit the spread of COVID-19 resulted in side effects that were identifiable in the total AOD and in some of its atmospheric components.Comparing these variables in 2019 and 2020(in the months during the quarantine)revealed that in April,the BCAOD values were much lower in 2020than in 2019.Conclusion:Based on the effects of the emerging COVID-19,the research listed the changes received from the AOD,and is considered as a comparative study and represents a significant side effect of the quarantine that was mainly designed to limit COVID-19. 展开更多
关键词 Coronavirus disease 2019(COVID-19) aerosol optical depth(AOD) Black carbon Organic matter SULFATE Blida City Algeria
下载PDF
Recent Trends in Satellite-Derived Chlorophyll and Aerosol Optical Depth Together with Simulated Dimethylsulfide in the Eastern China Marginal Seas
7
作者 QU Bo GABRIC Albert J. 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第2期486-498,共13页
The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentia... The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentially affecting climate.The spatio-temporal distribution of satellite-derived chlorophyll_a(CHL)and aerosol optical depth(AOD)for the recent years(2011-2019)in the Eastern China Marginal Seas(ECMS)(25°-40°N,120°-130°E)are studied.The seasonal CHL peaks occurred during late April and the CHL distribution displays a clear zonal gradient.Elevated CHL was also observed along the northern and western coastlines during summer and winter seasons.Trend analysis shows that mean CHL decreases by about 10%over the 9-year study period,while AOD was higher in south and lower in north during summertime.A genetic algorithm technique is used to calibrate the key model parameters and simulations are carried out for 2015,a year when field data was available.Our simulation results show that DMS seawater concentration ranges from 1.56 to 5.88 nmol L^(−1) with a mean value of 2.76 nmol L^(−1).DMS sea-air flux ranges from 2.66 to 5.00mmol m^(−2) d^(−1) with mean of 3.80mmol m^(−2) d^(−1).Positive correlations of about 0.5 between CHL and AOD were found in the study region,with higher correlations along the coasts of Jiangsu and Zhejiang Provinces.The elevated CHL concentration along the west coast is correlated with increased sea-water concentrations of DMS in the region.Our results suggest a possible influ-ence of DMS-derived aerosol in the local ECMS atmosphere,especially along the western coastline of ECMS. 展开更多
关键词 dimethylsulfide sea-to-air flux CHLOROPHYLL-A aerosol optical depth biogeochemical model Eastern China Marginal Seas
下载PDF
Can MODIS Detect Trends in Aerosol Optical Depth over Land?
8
作者 Xuehua FAN Xiang'ao XIA Hongbin CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期135-145,共11页
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collect- ing valuable data about the Earth system for more than 14 years, and one of the benefits of this is t... The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collect- ing valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MOD|S onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North Amer- ica, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements. 展开更多
关键词 MODIS AERONET aerosol optical depth Mann-Kendall trend test
下载PDF
Simulating Aerosol Optical Depth and Direct Radiative Effects over the Tibetan Plateau with a High-Resolution CAS FGOALS-f3 Model
9
作者 Min ZHAO Tie DAI +4 位作者 Hao WANG Qing BAO Yimin LIU Hua ZHANG Guangyu SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2137-2155,I0020-I0022,共22页
Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its... Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its direct radiative effect(DRE)over the TP by applying two horizontal resolutions of about 100 km and 25 km to the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere Land System(CAS FGOALS-f3)over a 10-year period.Compared to the AErosol RObotic NETwork observations,a high-resolution model(HRM)can better reproduce the spatial distribution and seasonal cycles of aerosol optical depth(AOD)compared to a low-resolution model(LRM).The HRM bias and RMSE of AOD decreased by 0.08 and 0.12,and the correlation coefficient increased by 0.22 compared to the LRM.An LRM is not sufficient to reproduce the aerosol variations associated with fine-scale topographic forcing,such as in the eastern marginal region of the TP.The difference between hydrophilic aerosols in an HRM and LRM is caused by the divergence of the simulated relative humidity(RH).More reasonable distributions and variations of RH are conducive to simulating hydrophilic aerosols.An increase of the 10-m wind speed in winter by an HRM leads to increased dust emissions.The simulated aerosol DREs at the top of the atmosphere(TOA)and at the surface by the HRM are–0.76 W m^(–2)and–8.72 W m^(–2)over the TP,respectively.Both resolution models can capture the key feature that dust TOA DRE transitions from positive in spring to negative in the other seasons. 展开更多
关键词 Tibetan Plateau high-resolution climate model aerosol optical depth aerosol direct radiative effect
下载PDF
Effect of model errors in ambient air humidity on the aerosol optical depth obtained via aerosol hygroscopicity in eastern China in the Atmospheric Chemistry and Climate Model Intercomparison Project datasets
10
作者 CHANG Wenyuan 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第3期162-169,共8页
This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the ... This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research. 展开更多
关键词 Atmospheric Chemistry and Climate Model Intercomparison Project aerosol optical depth efficiency relative humidity aerosol hygroscopicity
下载PDF
Study on Probability Distributions of Multi-Timescale Aerosol Optical Depth Using AERONET Data
11
作者 WU Lin ZENG Qing-Cun 《Atmospheric and Oceanic Science Letters》 2011年第4期216-222,共7页
The probability distribution analysis is per-formed for multi-timescale aerosol optical depth (AOD) using AErosol RObotic NETwork (AERONET) level 2.0 data.The maximum likelihood estimation is employed to determine the... The probability distribution analysis is per-formed for multi-timescale aerosol optical depth (AOD) using AErosol RObotic NETwork (AERONET) level 2.0 data.The maximum likelihood estimation is employed to determine the best-fit probability density function (PDF),and the statement that the fitting Weibull distribution will be light-tailed is proved true for these AOD samples.The best-fit PDF results for multi-site data show that the PDF of AOD samples with longer timescale in most sites tends to be stably represented by lognormal distribution,while Weibull distribution is a better fit for AOD samples with short timescales.The reason for this difference is ana-lyzed through tail characteristics of the two distributions,and an indicator for the selection between Weibull and lognormal distributions is suggested and validated.The result of this research is helpful for determining the most accurate AOD statistics for a given site and a given time-scale and for validating the retrieved AOD through its PDF. 展开更多
关键词 aerosol optical depth multi-timescale probability density function AERONET
下载PDF
Validation of Aerosol Optical Depth from Terra and Aqua MODIS Retrievals over a Tropical Coastal Site in China
12
作者 YANG Jing-Mei QIU Jin-Huan ZHAO Yan-Liang 《Atmospheric and Oceanic Science Letters》 2010年第1期36-39,共4页
This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun p... This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun photometer over Sanya (18.23°N,109.52°E),a tropical coastal site in China,from July 2005 to June 2006.The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the Microtops II sun photometer.The correlation coefficients for the linear regression fits (R2) are 0.83 for Terra and 0.78 for Aqua,and the regressed intercepts are near zero (0.005 for Terra,0.009 for Aqua).However,the Terra and Aqua MODIS are found to consistently underestimate AOD with respect to the Microtops II sun photometer,with slope values of 0.805 (Terra) and 0.767 (Aqua).The comparison of the monthly mean AOD indicates that for each month,the Terra and Aqua MODIS retrievals are matched with corresponding Microtops measurements but are systematically less than those of the Microtops.This validation study indicates that the Terra and Aqua MODIS AOD retrievals can adequately characterize the AOD distributions over the tropical coastal region of China,but further efforts to eliminate systematic errors are needed. 展开更多
关键词 aerosol aerosol optical depth Terra and Aqua MODIS. Microtops II sun photometer
下载PDF
Assessment of Dust Aerosol Optical Depth and Shortwave Radiative Forcing over the Northwest Pacific Ocean in Spring Based on Satellite Observations
13
作者 CHEN Lin SHI Guang-Yu +1 位作者 ZHONG Ling-Zhi TAN Sai-Chun 《Atmospheric and Oceanic Science Letters》 2009年第4期224-229,共6页
Dust aerosol optical depth (AOD) and its ac-companying shortwave radiative forcing (RF) are usually simulated by numerical models.Here,by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol... Dust aerosol optical depth (AOD) and its ac-companying shortwave radiative forcing (RF) are usually simulated by numerical models.Here,by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product data in combination with Clouds and the Earth's Radiant Energy System Single Scanner Footprint (CERES/SSF) data,dust AOD and its shortwave RF were estimated over the cloud-free north-west (NW) Pacific Ocean in the springs of 2004,2005,and 2006.The results showed that in this region,the mean dust AOD and its shortwave RF were 0.10 and 5.51 W m 2,respectively.In order to validate the dust AOD de-rived by MODIS,results from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model were also used here.The correlation coefficient between the monthly averaged dust AOD derived by MODIS measurements and the model simulation results was approximately 0.53.Since the estimates of the dust AOD and its shortwave RF obtained in this study are based mainly on satellite data,they offer a good reference for numerical models. 展开更多
关键词 dust aerosols optical depth shortwave radia- tive forcing northwest Pacific satellite measurements
下载PDF
Applying the Dark Target Aerosol Algorithm to MERSI-Ⅱ:Retrieval and Validation of Aerosol Optical Depth over the Ocean
14
作者 Xin PEI Leiku YANG* +4 位作者 Weiqian JI Shuang CHEN Xiaoqian CHENG Xiaofeng LU Hongtao WANG 《Advances in Atmospheric Sciences》 SCIE CAS 2024年第12期2446-2463,共18页
The Medium-Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ)instrument aboard China’s Fengyun-3D satellite shares similarities with NASA’s Moderate Resolution Imaging Spectroradiometer(MODIS)sensor,enabling the retrieval of g... The Medium-Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ)instrument aboard China’s Fengyun-3D satellite shares similarities with NASA’s Moderate Resolution Imaging Spectroradiometer(MODIS)sensor,enabling the retrieval of global aerosol optical depth(AOD).However,no officially released operational MERSI-Ⅱ aerosol products currently exist over the ocean.This study focuses on adapting the MODIS dark target(DT)ocean algorithm to the MERSI-Ⅱ sensor.A retrieval test is conducted on the 2019 MERSI-Ⅱ data over the global ocean,and the retrieved AODs are validated against ground-based measurements from the automatic Aerosol Robotic Network(AERONET)and the shipborne Maritime Aerosol Network(MAN).The operational MODIS DT aerosol products are also used for comparison purposes.The results show that MERSI-Ⅱ AOD granule retrievals are in good agreement with MODIS products,boasting high correlation coefficients(R)of up to 0.96 and consistent spatial distribution trends.Furthermore,the MERSI-Ⅱ retrievals perform well in comparison to AERONET and MAN measurements,with high R-values(>0.86).However,the low-value retrievals from MERSI-Ⅱ tend to be slightly overestimated compared to MODIS,despite both AODs displaying a positive bias.Notably,the monthly gridded AODs over the high latitudes of the northern and southern hemispheres suggest that MERSI-Ⅱ exhibits greater stability in space and time,effectively reducing unrealistically high-value noise in the MODIS products.These results illustrate that the MERSI-Ⅱ retrievals meet specific accuracy requirements by maintaining the algorithmic framework and most of the algorithmic assumptions,providing a crucial data supplement for aerosol studies and climate change. 展开更多
关键词 aerosol optical depth MERSI-Ⅱ MODIS dark target
下载PDF
Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter 被引量:11
15
作者 LI ShenShen CHEN LiangFu +5 位作者 TAO JinHua HAN Dong WANG ZhongTing SU Lin FAN Meng YU Chao 《Science China Earth Sciences》 SCIE EI CAS 2012年第9期1545-1553,共9页
Two factors that affect satellite retrieval of Aerosol Optical Depth(AOD) are aerosol model assumptions and the separation of surface reflectance.NASA/MODIS Dense Dark Vegetation(DDV) algorithm has been proven valuabl... Two factors that affect satellite retrieval of Aerosol Optical Depth(AOD) are aerosol model assumptions and the separation of surface reflectance.NASA/MODIS Dense Dark Vegetation(DDV) algorithm has been proven valuable in deriving aerosol distribution and properties over land;however,it cannot be applied to bright targets.As a supplement to the DDV algorithm,an algorithm to retrieve AOD over urban areas in North China in winter is developed using MODIS data,including(1) the generation and analysis of adjacent clear-days surface reflectance using MOD09 product from 2007 to 2008,and(2) seasonal aerosol models derived from AERONET data in Beijing and Xianghe sites.Ground-based measurements using sun photometers were used to validate the retrieved AOD,and the correlation coefficient(r) is up to 0.931.Especially for high AOD values(AOD>0.4),more retrievals meet the inversion accuracy.The temporal variations of retrieval errors over urban,rural and mountain regions were examined,and the results indicated that the variation of blue-band surface reflectance is less than 0.02 in a short period except for unusual weather conditions,the retrieval bias is under 0.08,and the relative error decreases as the AOD increases. 展开更多
关键词 aerosol optical depth MODIS surface reflectance bright targets
原文传递
A Method for Spaceborne Synthetic Remote Sensing of Atmospheric Aerosol Optical Depth and Vegetation Reflectance 被引量:6
16
作者 邱金桓 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期18-31,共14页
Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance ... Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance spectra from near ultra violet to near infrared and the sensitivity of outgoing radiance to vegetation reflectance and atmospheric aerosol optical depth, a new method for spaceborne synthetic remote sensing of the reflectance and the depth is proposed, and an iteration correlation inversion algorithm is developed in this paper. According to numerical experiment, effects of radiance error, error in aerosol imaginary index and vegetation medium inhomogeneity on retrieved result are analyzed. Inversion results show that the effect of error in aerosol imaginary index is very important. As the error of aerosol imaginary index is within 0.01, standard errors of aerosol optical depth and vegetation reflectance solutions for 14 spectral channels from 410 nm to 900 nm are respectively less than 0.063 and 0.023. And as the radiance error is within 2%, the standard errors are less than 0.023 and 0.0056. 展开更多
关键词 Vegetation reflectance aerosol optical depth Spaceborne remote sensing Sky radiance
下载PDF
Long-term trend in aerosol optical depth from 1980 to 2001 in north China 被引量:5
17
作者 Jiangxia Xie Xiangao Xia 《Particuology》 SCIE EI CAS CSCD 2008年第2期106-111,共6页
Using the Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical depth (AOD) at 500 nm data from 1980 to 2001 in north China, the spatial and temporal variations of AOD were examined. Seasonal AODs in Tak... Using the Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical depth (AOD) at 500 nm data from 1980 to 2001 in north China, the spatial and temporal variations of AOD were examined. Seasonal AODs in Taklimakan Desert were 0.69 and 0.44 in spring and summer, respectively, which were mainly due to frequent occurrences of dust events in this region. Dust activities in spring also led to high aerosol loading in Gobi Desert and in northeast China where spring AODs were 0.33 and 0.29, respectively. Heavily impacted by events such as volcano eruption, forest fires and extraordinary dust storms, AODs showed large inter-annual variations. A decreasing tendency in AOD was observed in north China during 1980-1991, though a reverse tendency was revealed during 1997-2001, especially for spring AOD in northeast China. Further study is required to figure out how much human activities have contributed to the AOD tendency in north China. 展开更多
关键词 Total Ozone Mapping Spectrometer (TOMS) aerosol optical depth (AOD) North China
原文传递
ANALYSIS OF THE ATMOSPHERIC AEROSOL OPTICAL DEPTH OVER CHINA IN 1980s 被引量:4
18
作者 罗云峰 李维亮 +2 位作者 周秀骥 何晴 倾继祖 《Acta meteorologica Sinica》 SCIE 2000年第4期490-498,500-502,共12页
This paper retrieves the yearly and monthly mean 0.75μm aerosol optical depth(AOD)of 41 A-class solar radiation stations over China from 1979 to 1990,and analyzes the spatial and temporal distribution of AOD over Chi... This paper retrieves the yearly and monthly mean 0.75μm aerosol optical depth(AOD)of 41 A-class solar radiation stations over China from 1979 to 1990,and analyzes the spatial and temporal distribution of AOD over China mainland.The data employed are daily direct solar radiation and sunshine duration,as well as the TOMS version-7 ozone observation data in the same time.The results indicate that the Siehuan Basin is the largest center of yearly mean AOD over China.and the other two larger centers lie in Wuhan City and the South Xinjiang Basin, separately.AOD values are also relatively larger in the middle-and-lower reaches area of Changjiang River.Shandong Peninsula and coastal area of Guangdong Province:while in Yunnan Province,coastal area of Fujian Province.most parts of Northwest and Northeast China,AOD values are relatively smaller.The distribution of AOD varies with different months.In most parts of China.the maximum of AOD occurs in spring season;but the minimum varies in different regions,From 1979 to 1990.in the Qinghai-Xizang Plateau,West Siehuan Basin,North Guizhou Province.most areas of the middle-and-lower reaches of Changjiang River,Shandong Peninsula and west part of South Xinjiang Basin.AOD shows an increasing trend.But in Northeast China, most part of Northwest China,Yunnan-Guizhou Plateau,western Guangxi Region and the coastal areas of East China,AOD shows decreasing tendency.Generally,the seasonal variation characteristics of AOD in China can be classified into four typical models,i.e.,mono-modal types A and B,bimodal and Poly-modal. 展开更多
关键词 aerosol optical depth(AOD) spatial and temporal distribution VARIATION 1980s
原文传递
Retrieval of Aerosol Optical Depth for Chongqing Using the HJ-1 Satellite Data 被引量:3
19
作者 Zengwu WANG Shiqi YANG +1 位作者 Qiaolin ZENG Yongqian WANG 《Journal of Meteorological Research》 SCIE CSCD 2017年第3期586-596,共11页
Aerosol optical depth (AOD) is a common indicator applied in monitoring aerosols in the atmosphere. The hilly landscape and rapid economic growth of the megacity Chongqing have facilitated increased aerosol concentr... Aerosol optical depth (AOD) is a common indicator applied in monitoring aerosols in the atmosphere. The hilly landscape and rapid economic growth of the megacity Chongqing have facilitated increased aerosol concentration, and it is meaningful to accurately retrieve AOD over Chongqing. The HJ-1A/B satellite of China carries a sensor/camera called the Charge Coupled Device (CCD), the spatial resolution of which meets the requirement for re- trieving high resolution AOD. In this paper, analysis of the AOD retrievals from different methods using the H J-1 satellite data revealed the most suitable algorithm. Through comparison with the AOD product of Moderate Resolu- tion Imaging Spectroradiometer (MODIS), the AOD retrieval results using enhanced vegetation index (EVI) to estim- ate dark pixels showed the highest correlation. The continental aerosol model was used to build a lookup table that was able to facilitate a good AOD retrieval for both city and rural areas. Finally, the algorithm that combined dark pixels, buffer areas, and the deep blue algorithm was found to be most suitable for AOD retrieval. The AOD retrieval results based on the HJ-1 data were consistent with MODIS products, and our algorithm yields reasonable results in most cases. The results were also compared with ground-based PMl0 measurements synchronized with the overpass time of the HJ-1 satellite, and high correlation was found. The findings are relevant to other Chinese satellite data used for retrieving AOD on the same channels. 展开更多
关键词 aerosol optical depth HJ-1 satellite dark pixels algorithm deep blue algorithm
原文传递
Atmospheric aerosol pollution across China:a spatiotemporal analysis of satellite-based aerosol optical depth during 2000–2016 被引量:2
20
作者 Yao Feng Dongmei Chen Xuehong Zhang 《International Journal of Digital Earth》 SCIE EI 2019年第7期843-857,共15页
Increasing attention has been paid to the deterioration of air quality in China during the past decade.This study presents the spatiotemporal variations of aerosol concentration across China during 2000–2016 using ae... Increasing attention has been paid to the deterioration of air quality in China during the past decade.This study presents the spatiotemporal variations of aerosol concentration across China during 2000–2016 using aerosol optical depth(AOD)from the atmospheric product of Moderate Resolution Imaging Spectroradiometer.Percentile thresholds are applied to define AOD days with different loadings.Temporally,aerosol concentration has increased since 2000 and reached the highest level in 2011;then it has declined from 2011 to 2016.Seasonally,aerosol concentration is the highest in summer and the lowest in winter.Spatially,North China and Sichuan Basin are featured by high aerosol concentration with increasing trends in North China and decreasing trends in Sichuan Basin.North,Southeast and Southwest China have been through increasing days with low AOD loading;however,Northeast China has experienced increasing days with high AOD loading.It is likely that air quality influenced by aerosols has notably improved over North China in spring and summer,over Southwest and Southeast China in autumn,but has degraded over Northeast China in autumn. 展开更多
关键词 aerosol optical depth(AOD) spatiotemporal analysis MODIS China air quality
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部