期刊文献+
共找到360篇文章
< 1 2 18 >
每页显示 20 50 100
Automatic Aggregation Enhanced Affinity Propagation Clustering Based on Mutually Exclusive Exemplar Processing
1
作者 Zhihong Ouyang Lei Xue +1 位作者 Feng Ding Yongsheng Duan 《Computers, Materials & Continua》 SCIE EI 2023年第10期983-1008,共26页
Affinity propagation(AP)is a widely used exemplar-based clustering approach with superior efficiency and clustering quality.Nevertheless,a common issue with AP clustering is the presence of excessive exemplars,which l... Affinity propagation(AP)is a widely used exemplar-based clustering approach with superior efficiency and clustering quality.Nevertheless,a common issue with AP clustering is the presence of excessive exemplars,which limits its ability to perform effective aggregation.This research aims to enable AP to automatically aggregate to produce fewer and more compact clusters,without changing the similarity matrix or customizing preference parameters,as done in existing enhanced approaches.An automatic aggregation enhanced affinity propagation(AAEAP)clustering algorithm is proposed,which combines a dependable partitioning clustering approach with AP to achieve this purpose.The partitioning clustering approach generates an additional set of findings with an equivalent number of clusters whenever the clustering stabilizes and the exemplars emerge.Based on these findings,mutually exclusive exemplar detection was conducted on the current AP exemplars,and a pair of unsuitable exemplars for coexistence is recommended.The recommendation is then mapped as a novel constraint,designated mutual exclusion and aggregation.To address this limitation,a modified AP clustering model is derived and the clustering is restarted,which can result in exemplar number reduction,exemplar selection adjustment,and other data point redistribution.The clustering is ultimately completed and a smaller number of clusters are obtained by repeatedly performing automatic detection and clustering until no mutually exclusive exemplars are detected.Some standard classification data sets are adopted for experiments on AAEAP and other clustering algorithms for comparison,and many internal and external clustering evaluation indexes are used to measure the clustering performance.The findings demonstrate that the AAEAP clustering algorithm demonstrates a substantial automatic aggregation impact while maintaining good clustering quality. 展开更多
关键词 clustering affinity propagation automatic aggregation enhanced mutually exclusive exemplars constraint
下载PDF
Local and global approaches of affinity propagation clustering for large scale data 被引量:15
2
作者 Ding-yin XIA Fei WU +1 位作者 Xu-qing ZHAN Yue-ting ZHUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1373-1381,共9页
Recently a new clustering algorithm called 'affinity propagation' (AP) has been proposed, which efficiently clustered sparsely related data by passing messages between data points. However, we want to cluster ... Recently a new clustering algorithm called 'affinity propagation' (AP) has been proposed, which efficiently clustered sparsely related data by passing messages between data points. However, we want to cluster large scale data where the similarities are not sparse in many cases. This paper presents two variants of AP for grouping large scale data with a dense similarity matrix. The local approach is partition affinity propagation (PAP) and the global method is landmark affinity propagation (LAP). PAP passes messages in the subsets of data first and then merges them as the number of initial step of iterations; it can effectively reduce the number of iterations of clustering. LAP passes messages between the landmark data points first and then clusters non-landmark data points; it is a large global approximation method to speed up clustering. Experiments are conducted on many datasets, such as random data points, manifold subspaces, images of faces and Chinese calligraphy, and the results demonstrate that the two ap-proaches are feasible and practicable. 展开更多
关键词 clustering affinity propagation Large scale data Partition affinity propagation Landmark affinity propagation
下载PDF
Adaptive spectral affinity propagation clustering 被引量:1
3
作者 TANG Lin SUN Leilei +1 位作者 GUO Chonghui ZHANG Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期647-664,共18页
Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP ... Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms. 展开更多
关键词 affinity propagation(ap) Laplacian eigenmap(LE) arbitrary-shaped cluster model selection
下载PDF
3D Model Retrieval Method Based on Affinity Propagation Clustering 被引量:2
4
作者 Lin Lin Xiao-Long Xie Fang-Yu Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期12-21,共10页
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e... In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively. 展开更多
关键词 feature extraction project ray-based method affinity propagation clustering 3D model retrieval
下载PDF
Improved Semi-supervised Clustering Algorithm Based on Affinity Propagation
5
作者 金冉 刘瑞娟 +1 位作者 李晔锋 寇春海 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期125-131,共7页
A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered... A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several hierarchies evenly,draws samples from data of each hierarchy according to weight,and executes semi-supervised learning through construction of pairwise constraints and use of submanifold label mapping,weighting and combining clustering results of all hierarchies by combined promotion. It is shown by theoretical analysis and experimental result that clustering accuracy and computation complexity of the semi-supervised affinity propagation clustering algorithm based on layered combination( SAP-LC algorithm) have been greatly improved. 展开更多
关键词 semi-supervised clustering affinity propagation(ap) layered combination computation complexity combined promotion
下载PDF
Semi-supervised Affinity Propagation Clustering Based on Subtractive Clustering for Large-Scale Data Sets
6
作者 Qi Zhu Huifu Zhang Quanqin Yang 《国际计算机前沿大会会议论文集》 2015年第1期76-77,共2页
In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore,... In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed. 展开更多
关键词 subtractive clustering INITIAL cluster affinity propagation clustering SEMI-SUPERVISED clustering LARGE-SCALE data SETS
下载PDF
Analyzing potential tourist behavior using PCA and modified affinity propagation clustering based on Baidu index:taking Beijing city as an example
7
作者 Lin Wang Sirui Wang +1 位作者 Zhe Yuan Lu Peng 《Data Science and Management》 2021年第2期12-19,共8页
In recent years,when planning and determining a travel destination,residents often make the best of Internet techniques to access extensive travel information.Search engines undeniably reveal visitors'real-time pr... In recent years,when planning and determining a travel destination,residents often make the best of Internet techniques to access extensive travel information.Search engines undeniably reveal visitors'real-time preferences when planning to visit a destination.More and more researchers have adopted tourism-related search engine data in the field of tourism prediction.However,few studies use search engine data to conduct cluster analysis to identify residents'choice toward a tourism destination.In the present study,146 keywords related to“Beijing tourism”are obtained from Baidu index and principal component analysis(PCA)is applied to reduce the dimensionality of keywords obtained by Baidu index.Modified affinity propagation(MAP)clustering algorithm is used to classify provinces into several groups to identify the choice of residents to travel to Beijing.The result shows that residents in Hebei province are most likely to travel to Beijing.The cluster result also shows that PCA–MAP performs better than other clustering methods such as K-means,linkage,and Affinity Propogation(AP)in terms of silhouette coefficient and Calinski–Harabaz index.We also distinguish the difference of residents’choice to travel to Beijing during the peak tourist season and off-season.The residents of Tianjing are inclined to travel to Beijing during the peak tourist season.The residents of Guangdong,Hebei,Henan,Jiangsu,Liaoning,Shanghai,Shandong,and Zhejiang have high attention to travel to Beijing during both seasons. 展开更多
关键词 Principal component analysis(PCA) affinity propagation Baidu index data cluster analysis
下载PDF
基于Affinity Propagation聚类方法的图像检索技术在数字图书馆中的应用 被引量:4
8
作者 万洁 《计算机与现代化》 2008年第8期116-119,共4页
随着数字图书馆包含的内容逐渐丰富,数字图像也越来越多。为了有效地检索这些图像,迫切需要一种效率更高的检索方法。目前的基于内容的图像检索算法在检索时间和效率上都还不能满足这一需求。本文采用最新提出的Af-finity Propagation... 随着数字图书馆包含的内容逐渐丰富,数字图像也越来越多。为了有效地检索这些图像,迫切需要一种效率更高的检索方法。目前的基于内容的图像检索算法在检索时间和效率上都还不能满足这一需求。本文采用最新提出的Af-finity Propagation聚类方法和颜色-形状直方图特征,提出一种新的检索方法应用到数字图书馆进行图像检索。经过试验证明在查准率、查全率和检索时间上均有较大的提高。 展开更多
关键词 图像检索 数字图书馆 affinity propagation cluster 颜色.形状直方图
下载PDF
基于SIFT和Affinity Propagation的遥感图像配准算法 被引量:1
9
作者 潘博阳 杨鹤猛 伍小洁 《信息技术》 2014年第12期25-28,32,共5页
随着传感器和光学影像测量等各种技术的快速发展,航空遥感技术已经在电力巡检、森林防火、地理测绘等领域中发挥着越来越重要的作用,而图像配准作为遥感图像的预处理步骤为图像融合等后续处理提供了参考和依据,目前已经成为遥感图像处... 随着传感器和光学影像测量等各种技术的快速发展,航空遥感技术已经在电力巡检、森林防火、地理测绘等领域中发挥着越来越重要的作用,而图像配准作为遥感图像的预处理步骤为图像融合等后续处理提供了参考和依据,目前已经成为遥感图像处理领域的研究热点。文中提出了一种基于尺度不变特征变换(Scale-invariant Feature Transform,SIFT)和仿射传播聚类(Affinity Propagation,AP)的图像配准算法。该算法与原有算法相比优势在于无需预先设定参数,并且实验仿真表明该算法能有效地对多源图像进行高精度的配准,与随机抽样一致算法(Random Sample Consensus,RANSAC)相比提高了正确匹配点的数目。 展开更多
关键词 航空遥感 图像配准 affinity propagation(ap) Scale-invariant feature transform(SIFT)
下载PDF
基于AAPC、CS与卡尔曼滤波的WiFi室内定位跟踪算法
10
作者 胡久松 孙英杰 +2 位作者 黄晓峰 谷志茹 李浩 《湖南工业大学学报》 2024年第6期71-78,共8页
针对基于位置指纹的WiFi室内定位技术的定位精度尚未达到实际应用要求的问题,提出一种融合自适应仿射传播(AAPC)、压缩感知(CS)与卡尔曼滤波的WiFi室内定位跟踪算法。其中,离线阶段使用AAPC算法生成具有最优聚类效应性能的聚类指纹,在... 针对基于位置指纹的WiFi室内定位技术的定位精度尚未达到实际应用要求的问题,提出一种融合自适应仿射传播(AAPC)、压缩感知(CS)与卡尔曼滤波的WiFi室内定位跟踪算法。其中,离线阶段使用AAPC算法生成具有最优聚类效应性能的聚类指纹,在线阶段采用CS与最近邻算法进行位置估计。最后,通过将卡尔曼滤波与物理限制相集成来进行定位跟踪。通过采集大量真实实验数据,证明了所开发的算法具有更高的定位精度和更准确的轨迹跟踪效果。 展开更多
关键词 WiFi室内定位 自适应仿射传播 压缩感知 卡尔曼滤波
下载PDF
Steganalysis Using Fractal Block Codes and AP Clustering in Grayscale Images 被引量:1
11
作者 Guang-Yu Kang Yu-Xin Su +2 位作者 Shi-Ze Guo Rui-Xu Guo Zhe-Ming Lu 《Journal of Electronic Science and Technology》 CAS 2011年第4期312-316,共5页
This paper presents a universal scheme (also called blind scheme) based on fractal compression and affinity propagation (AP) clustering to distinguish stego-images from cover grayscale images, which is a very chal... This paper presents a universal scheme (also called blind scheme) based on fractal compression and affinity propagation (AP) clustering to distinguish stego-images from cover grayscale images, which is a very challenging problem in steganalysis. Since fractal codes represent the "self-similarity" features of natural images, we adopt the statistical moment of fractal codes as the image features. We first build an image set to store the statistical features without hidden messages, of natural images with and and then apply the AP clustering technique to group this set. The experimental result shows that the proposed scheme performs better than Fridrich's traditional method. 展开更多
关键词 affinity propagation clustering fractal compression STEGANALYSIS universal steganalysis.
下载PDF
融合AP聚类算法和宽度学习系统的分布外硬盘故障预测
12
作者 王屹阳 刘发贵 +1 位作者 彭玲霞 钟国祥 《计算机科学》 CSCD 北大核心 2024年第8期63-74,共12页
硬盘是云数据中心最主要的存储设备,硬盘故障预测是保障数据安全的重要手段。但是,硬盘的故障与健康样本之间存在着极端的数量不平衡问题,这会导致模型偏差;此外,不同型号的硬盘数据分布存在一定的差异,在特定硬盘数据上训练的模型往往... 硬盘是云数据中心最主要的存储设备,硬盘故障预测是保障数据安全的重要手段。但是,硬盘的故障与健康样本之间存在着极端的数量不平衡问题,这会导致模型偏差;此外,不同型号的硬盘数据分布存在一定的差异,在特定硬盘数据上训练的模型往往不适用于其他硬盘。对于这两个问题,文中提出了一种融合AP聚类算法和宽度学习系统的分布外硬盘故障预测方法。针对样本不平衡问题,文中使用AP聚类算法对硬盘故障出现前一阶段的样本集进行聚类,将与故障样本处于同一聚类簇的样本扩充为故障样本。针对不同型号硬盘分布存在差异的问题,文中结合流形正则化框架和宽度学习系统来学习硬盘数据的低维结构,提高模型对未知分布数据的泛化能力。实验结果表明,在AP聚类算法重采样的样本集上,相较于用于对比的重采样方法得到的样本集,多种故障预测方法的F1_Score取得了平均0.2的提升。此外,在分布外硬盘故障预测任务上,所提模型的F1_Score相比对比方法提升了0.1~0.2。 展开更多
关键词 硬盘故障预测 类不平衡 分布外泛化 ap聚类 宽度学习系统 流形学习
下载PDF
基于AP-WOA-GRU的分布式光伏集群电压越限动态预测
13
作者 韩雨 郭成 +1 位作者 方正云 陈凤仙 《电网与清洁能源》 CSCD 北大核心 2024年第4期118-126,共9页
针对整县光伏背景下规模化分布式光伏接入配电网导致的电压波动问题,提出了一种基于近邻传播聚类(affinity propagation,AP)与鲸鱼算法(whale optimization algorithm,WOA)优化门控循环单元(gated recurrent unit,GRU)的分布式光伏集群... 针对整县光伏背景下规模化分布式光伏接入配电网导致的电压波动问题,提出了一种基于近邻传播聚类(affinity propagation,AP)与鲸鱼算法(whale optimization algorithm,WOA)优化门控循环单元(gated recurrent unit,GRU)的分布式光伏集群电压越限预测方法。首先,在考虑分布式光伏地理坐标气象特征的基础上,添加基于配电网节点负荷密度因素的位置特征,采用近邻传播聚类方法,在不指定聚类数目的情况下划分具有近似气象特征和地理位置特征的分布式光伏集群,提高模型训练效果及适应性;然后,采用鲸鱼优化算法全局搜索GRU模型的最优训练参数,进一步提高模型的训练速度和预测精度;最后,利用WOA-GRU组合模型实现配电网节点电压与环境温度、光照强度的关联匹配,进而实现区域配电网电压波动及电压越限情况的整体预测。实验证明:所提出的方法能够有效提高预测精度及训练速度,强化预测模型的适应能力,具有较好的经济性和实用性。 展开更多
关键词 电压越限 分布式光伏 鲸鱼优化算法 门控循环单元 近邻传播聚类
下载PDF
基于改进的Affnity Propagation聚类的木材缺陷识别 被引量:4
14
作者 吴东洋 业宁 +1 位作者 徐波 尹佟明 《工程数学学报》 CSCD 北大核心 2012年第4期600-606,共7页
本文提出了一种基于快速Affnity Propagation聚类算法的木材缺陷识别方法.通过提取木材图像的颜色矩特征,建立样本特征集X,以平均平方残基为阈值降低样本特征集X及距离矩阵S的维数,自动识别木材缺陷位置并标记.实验表明,该方法的识别速... 本文提出了一种基于快速Affnity Propagation聚类算法的木材缺陷识别方法.通过提取木材图像的颜色矩特征,建立样本特征集X,以平均平方残基为阈值降低样本特征集X及距离矩阵S的维数,自动识别木材缺陷位置并标记.实验表明,该方法的识别速度较传统的AP算法有明显提高,平均识别时间约为0.557s,平均识别查准率约为70.5%,平均识别查全率约为95.6%. 展开更多
关键词 Affnity propagation聚类 木材缺陷 自动识别 降维
下载PDF
Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm 被引量:6
15
作者 Xin-zheng XU Shi-fei DING +1 位作者 Zhong-zhi SHI Hong ZHU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第2期131-138,共8页
A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theor... A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theory, as a preprocessor of RBFNN, is presented to eliminate noise and redundant attributes of datasets while determining the number of neurons in the input layer of RBFNN. Second, an AP clustering algorithm is proposed to search for the centers and their widths without a priori knowledge about the number of clusters. These parameters are transferred to the RBF units of RBFNN as the centers and widths of the RBF function. Then the weights connecting the hidden layer and output layer are evaluated and adjusted using the least square method (LSM) according to the output of the RBF units and desired output. Experimental results show that the proposed method has a more powerful generalization capability than conventional methods for an RBFNN. 展开更多
关键词 Radial basis function neural network (RBFNN) Rough sets affinity propagation clustering
原文传递
基于BLAP聚类和多粒度犹豫模糊集的售电套餐推荐方法 被引量:3
16
作者 马愿谦 李启源 +3 位作者 陈汉忠 张智 林振智 杨莉 《电力系统自动化》 EI CSCD 北大核心 2023年第1期96-104,共9页
现有基于用户评价信息的售电套餐推荐方法因忽略了差异化用户评价信息的多样性,且仅考虑了用户擅长评价售电套餐所有属性的情形,给推荐结果带来较大偏差。为此,提出了一种基于双层邻近传播(BLAP)聚类和多粒度犹豫模糊语言评价集的售电... 现有基于用户评价信息的售电套餐推荐方法因忽略了差异化用户评价信息的多样性,且仅考虑了用户擅长评价售电套餐所有属性的情形,给推荐结果带来较大偏差。为此,提出了一种基于双层邻近传播(BLAP)聚类和多粒度犹豫模糊语言评价集的售电套餐推荐方法。首先,提出了基于用户画像标签体系和BLAP聚类的样本用户集划分方法,以辨别用电特性相似的用户;然后,考虑多粒度犹豫模糊语言评价集和权重不完整信息,提出了样本用户集对售电套餐选择的模糊评价方法;接着,提出了基于样本用户集评价信息的新用户满意度评估方法和售电套餐的全排序推荐方法,以实现售电公司对售电套餐的精准推荐。最后,以中国某地区用户为对象进行算例分析,结果表明基于BLAP聚类和多粒度犹豫模糊集的售电套餐推荐方法能够帮助售电公司提高推荐质量,进而提升用户满意度,增强用户黏性。 展开更多
关键词 售电套餐 售电公司 用户画像 双层邻近传播聚类 多粒度犹豫模糊集 满意度评估
下载PDF
Semi-Supervised Clustering Fingerprint Positioning Algorithm Based on Distance Constraints
17
作者 Ying Xia Zhongzhao Zhang +1 位作者 Lin Ma Yao Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期55-61,共7页
With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,... With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms. 展开更多
关键词 wireless local area network(WLAN) SEMI-SUPERVISED similarity matrix clustering affinity propagation
下载PDF
基于多模式分解和多分支输入的光伏功率超短期预测
18
作者 毕贵红 张梓睿 +3 位作者 赵四洪 黄泽 鲍童语 骆钊 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3837-3849,I0001,共14页
针对光伏发电功率随机性强、波动性大导致其预测精度不高的问题,提出一种基于自适应近邻传播聚类(adaptive affinity propagation clustering,adAP)、多模式分解、多分支输入组合的光伏功率预测方法。首先,基于相关性分析找到与光伏发... 针对光伏发电功率随机性强、波动性大导致其预测精度不高的问题,提出一种基于自适应近邻传播聚类(adaptive affinity propagation clustering,adAP)、多模式分解、多分支输入组合的光伏功率预测方法。首先,基于相关性分析找到与光伏发电功率高度相关的气象因素,并利用快速傅里叶变换(fast Fourier transform,FFT)将光伏输出功率从时域转换到频域,与相关度高的气象因素一起作为adAP算法的聚类特征,对具有相似气象特征的日场景进行分类;其次,对聚类相似日较少且输出功率波动剧烈天气类型中的气象相关因素和光伏输出功率添加高斯白噪声,并将其与原始数据合并,达到倍增样本的效果,以提升模型的泛化能力和鲁棒性;然后,使用变分模态分解(variational mode decomposition,VMD)、奇异谱分解(singular spectrum decomposition,SSD)和群分解(swarm decomposition,SWD)对光伏功率、辐照度和温度进行分解,削弱原始序列的波动性,丰富模型的输入特征;最后,搭建多分支的残差网络(residual network,ResNet)和长短期记忆网络(long short term memory network,LSTM)模型,提取数据的时间特征和波动特征,合并后输入到门控循环单元网络(gated recurrent unit network,GRU)中,建立历史特征和未来光伏输出功率的联系,得到预测结果。实验结果表明,所提出的多模型组合预测方法在光伏功率波动较缓天气情况下,能够保持较高的预测精度;在波动剧烈天气情况下,能够较大地提升预测精度。 展开更多
关键词 光伏发电 超短期预测 自适应近邻传播聚类 多分支输入 多模式分解 深度学习
下载PDF
寒区电动公交充电站选址及定容规划研究
19
作者 胡晓伟 宋帅 +1 位作者 邱振洋 王健 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第2期281-292,共12页
寒区低温环境导致电动公交动力电池容量衰减,充电设施服务范围及规划数量受到影响,给电动公交充电站选址及定容规划带来挑战。为提高电动公交充电站的低温适应性,提出针对寒区电动公交充电站的选址算法及定容模型。首先,在选址规划中,... 寒区低温环境导致电动公交动力电池容量衰减,充电设施服务范围及规划数量受到影响,给电动公交充电站选址及定容规划带来挑战。为提高电动公交充电站的低温适应性,提出针对寒区电动公交充电站的选址算法及定容模型。首先,在选址规划中,构建充电站渐进覆盖服务半径,利用改进近邻传播聚类算法确定充电站选址点,基于算法聚类中心构建充电站Voronoi图划分充电集群。其次,在定容规划中,构建动力电池低温容量衰减模型,确定寒区电动公交的充电需求;基于容量有限的截尾排队论模型建立充电站有效服务强度、拒绝服务率及充电满意度等约束;引入成本权衡系数,以规划年限内全社会成本最小为优化目标,建立寒区充电站定容规划模型,并设计遗传算法进行求解。最后,以哈尔滨市市区电动公交充电站选址定容规划为例进行分析,算例结果得到9个充电站选址点及其充电集群,以及各充电站的充电机配置数量和各项成本。针对环境温度和成本权衡系数进行灵敏度分析,结果表明:寒区低温环境对充电站的充电机配置数量和各项成本有显著影响,合理权衡充电站和电动公交两者利益有助于提高充电服务满意度,降低全社会成本。 展开更多
关键词 城市交通 选址定容规划 近邻传播聚类算法 电动公交充电站 寒区低温环境 电池容量衰减
下载PDF
考虑动态重构和智能软开关接入的配电网源网荷储联合规划 被引量:1
20
作者 徐来烽 张沈习 +2 位作者 叶琳浩 曹毅 程浩忠 《南方电网技术》 CSCD 北大核心 2024年第4期130-140,共11页
随着新能源大量接入配电网,新能源出力的不确定性和波动性给配电网规划带来了巨大挑战。在配电网规划中综合考虑源网荷储,可减少新能源不确定性和波动性对规划结果的影响。提出了一种考虑动态重构和智能软开关接入的配电网源网荷储联合... 随着新能源大量接入配电网,新能源出力的不确定性和波动性给配电网规划带来了巨大挑战。在配电网规划中综合考虑源网荷储,可减少新能源不确定性和波动性对规划结果的影响。提出了一种考虑动态重构和智能软开关接入的配电网源网荷储联合规划方法。首先,根据密度峰值聚类的思想提出了基于密度峰值改进的近邻传播聚类算法,对风光荷联合场景进行聚类获得典型日曲线。然后,以规划总费用最小为目标函数,建立了考虑动态重构和智能软开关接入的配电网源网荷储联合规划模型,并基于二阶锥理论,将原非凸非线性规划模型转化为混合整数二阶锥规划模型。最后,在Portugal 54算例上进行仿真验证,证明了所提模型和方法的有效性。 展开更多
关键词 配电网 源网荷储 联合规划 改进的近邻传播聚类算法 动态重构 智能软开关
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部