In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) st...In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR.展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx r...NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades.This work reports the NSR of nitric oxide(NO)by combining non-thermal plasma(NTP)and Co/Pt/Ba/γ-Al2O3(Co/PBA)catalyst using methane as a reductant.The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150°C–350°C,and NOx conversion of the 8%Co/PBA catalyst reaches 96.8%at 350°C.Oxygen(O_(2))has a significant effect on the removal of NOx,and the NOx conversion increases firstly and then decreases when the O_(2)concentration ranges from 2%to 10%.Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts.There is a negative correlation between sulfur dioxide(SO_(2))and NOx conversion in the NTP system,and the 8%Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts,which shows that Co has a certain SO_(2)resistance.展开更多
Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present stud...Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.展开更多
A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. Th...A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er/γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er/γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.展开更多
基金the National Natural Science Foundation of China (51676090)the Natural Science Foundation of Jiangsu Province (BK20150513), and the Six Talent Peaks Project in Jiangsu Province.
文摘In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR.
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
基金by the National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019A13)the National Key Research and Development Project of China(No.2019YFC1805505)+2 种基金the Shanxi Province Bidding Project(No.20191101007)the Major Science and Technology Projects of Shanxi Province(No.20181102017)State Key Laboratory of Organic Geochemistry(No.SKLOG-201909)。
文摘NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades.This work reports the NSR of nitric oxide(NO)by combining non-thermal plasma(NTP)and Co/Pt/Ba/γ-Al2O3(Co/PBA)catalyst using methane as a reductant.The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150°C–350°C,and NOx conversion of the 8%Co/PBA catalyst reaches 96.8%at 350°C.Oxygen(O_(2))has a significant effect on the removal of NOx,and the NOx conversion increases firstly and then decreases when the O_(2)concentration ranges from 2%to 10%.Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts.There is a negative correlation between sulfur dioxide(SO_(2))and NOx conversion in the NTP system,and the 8%Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts,which shows that Co has a certain SO_(2)resistance.
基金Supported by a Grant-in-Aid for the COE project,Giant Molecules and Complex Systems2004,Ministry of Education,Culture,Sports,Science and Technology of Japan.National Natural Scientific Foundation of China(No.50174050)
文摘Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.
文摘A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er/γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er/γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.