Ag-TiO2/ITO film electrode was used as photoanode to investigate the feasibility of a hybrid technology of Ag nanoparticles combined with the application of anodic bias. The results showed that the deposited Ag and a...Ag-TiO2/ITO film electrode was used as photoanode to investigate the feasibility of a hybrid technology of Ag nanoparticles combined with the application of anodic bias. The results showed that the deposited Ag and applied anodic bias have an apparent additive effect.展开更多
Ag loaded mesoporous silica-embedded TiO_2 nanocomposites were successfully synthesized via two different routes,including one-pot solvothermal method and solvothermal-chemical reduction method,both using Titanium(Ⅳ...Ag loaded mesoporous silica-embedded TiO_2 nanocomposites were successfully synthesized via two different routes,including one-pot solvothermal method and solvothermal-chemical reduction method,both using Titanium(Ⅳ) n-butoxide(Ti(OC_4H_9)_4) as a precursor,formic acid as a solvent and reducing agent,silver nitrate as a silver source and tetraethyl silicate(TEOS) as a stabilizer.The transmission electron microscopic(TEM) images showed that silica-embedded anatase TiO_2 sample exhibited approximately rhombic shape and Ag nanoparticles could be embedded into the nanocomposites or deposited on the surface with high dispersion.The N_2 adsorption-desorption isotherms indicated that the silica-embedded anatase TiO_2 had obvious mesoporous structure with a BET specific surface area of 203.5 m^2·g^-1.All Ag loaded silica-embedded TiO_2composites showed a higher photocatalytic H2-generation activity from water splitting under simulative solar light irradiation than that of TiO2 products.The maximum H_2 production rate(6.10 mmol·h^-1·g^-1) was obtained over 2%Ag/silica-embedded TiO2 nanocomposites(2%Ag/MST) prepared by solvothermal-chemical reduction method,which was 20 times that achieved on the silica-embedded TiO2 sample.The enhanced photocatalytic H2-evolution activity of Ag loaded mesoporous silica-embedded TiO2 nanocomposites can be attributed to the multi-function of surface Ag co-catalyst,mesoporous structure,and embedding of silica.展开更多
Photocatalytic reduction of CO2 into various types of fuels has attracted great interest,and serves as a potential solution to addressing current global warming and energy challenges.In this work,Ag-Cu nanoparticles a...Photocatalytic reduction of CO2 into various types of fuels has attracted great interest,and serves as a potential solution to addressing current global warming and energy challenges.In this work,Ag-Cu nanoparticles are densely supported on N-doped TiO2 nanowire through a straightforward nanofabrication approach.The range of light absorption by N-doped TiO2 can be tuned to match the plasmonic band of Ag nanoparticles,which allows synergizing a resonant energy transfer process with the Schottky junction.Meanwhile,Cu nanoparticles can provide active sites for the reduction of CO2 molecules.Remarkably,the performance of photocatalytic CO2 reduction is improved to produce CH4 at a rate of 720μmol·g-1·h-1 under full-spectrum irradiation.展开更多
The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis r...The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.展开更多
A new combination method consisting of ball milling, carbothermic reduction and hydrochloric acid leaching was proposed for the preparation of nanosized synthetic rutile from natural ilmenite. The ball milling was emp...A new combination method consisting of ball milling, carbothermic reduction and hydrochloric acid leaching was proposed for the preparation of nanosized synthetic rutile from natural ilmenite. The ball milling was employed to grind ilmenite into small particles. The carbothermic reduction was carried out to yield a high titanium slag, which would be easily purified by subsequent leaching procedure. Factors affecting the hydrochloric acid process, namely the leaching time, temperature, and acid concentration, were studied. After leaching and calcining the milled and annealed mixture of FeTiO3/C under the optimal conditions, the TiO2 nanoparticles with size of 10-200 nm and purity〉98.0% were obtained.展开更多
Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. ...Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. The advantages of such spherical TiO2 particles were examined in terms of photovoltaic characteristics of a dye-sensitized solar cell (DSSC) using Orange IV dye as sensitizer. Significantly higher overall solar energy conversion efficiency was obtained for a DSSC using the film of these spherical TiO2 particles, compared with that of a cell using a TiO2 film prepared without surfactant.展开更多
Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emissi...Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the crystalline structure, chemical valence states and morphology of TiO2 nanoparticles. UV-Vis absorption spectrum was used to measure the optical absorption property of the samples. The photocatalytic performance of the samples was characterized by degrading 20 mg/L methyl orange under UV-Vis irradiation. The results show that the Cu-doped TiO2 nanoparticles exhibit a significant increase in photocatalytic performance over the pure TiO2 nanoparticles, and the TiO2 nanoparticles doped with 1.0% Cu show the best photocatalytic performance. The improvement in photocatalytic performance is attributed to the enhanced light adsorption in UV-Vis range and the decrease of the recombination rate of photoinduced electron-hole oair of the Cu-doped TiO2 nanoparticles.展开更多
Increasing application of nanotechnology highlights the need to clarify and understand nanotoxicity. Mammalian and in vitro studies have raised concerns about the toxicity of titanium dioxide nanoparticles (TiO2-NPs...Increasing application of nanotechnology highlights the need to clarify and understand nanotoxicity. Mammalian and in vitro studies have raised concerns about the toxicity of titanium dioxide nanoparticles (TiO2-NPs), but there are limited data on ecotoxicity to aquatic organisms. In this work, the sub-acute toxicity of TiO2-NPs to carp (Cyprinus carpio) was assessed. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities and lipid peroxidation (LPO) levels in liver, gill and brain tissues of carps varied with concentration of TiO2-NPs suspensions and exposure time (up to 8 d). As a result, 100 and 200 mg/L TiO2-NPs caused statistically significant decrease in SOD, CAT and POD activities and significant increase in LPO levels in tissues (P 〈 0.05), suggesting that the fish exposed to these two concentrations of TiO2-NPs suffered from the oxidative stress. The extent of depletion of antioxidant enzymes activities and the elevation of LPO in the liver was the greatest, indicating that the liver might be the most susceptible organ to TiO2-NPs exposure. In addition, carps had gill pathologies including edema and thickening of gill lamellae as well as gill filaments, and liver pathologies including necrotic and apoptosis hepatocytes after exposed to 100 and 200 mg/L TiO2-NPs for 20 d. These results indicated a potential risk from TiO2-NPs released into the aqueous environment.展开更多
There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study,...There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study, the thermal conductivity values of heat transfer oil and TiO2 nano-oil in the above high temperature range were measured by a newly developed high-temperature thermal conductivity meter. Based on the principle of least square method, the thermal conductivity values obtained from experiments were fitted separately, and the correlation between thermal conductivity and temperature of heat transfer oil and TiO2 nano-oil was obtained. The results show that the thermal conductivity and the increased percentage of thermal conductivity of TiO2 nano-oil are proportional to the increase of particle size and mass fraction of nanoparticles, but thermal conductivity is in reverse proportion to the increase of temperature and the increased percentage of thermal conductivity is less affected by temperature.展开更多
Ce-doped titanium oxide nanoparticles were investigated in the paper. The surface structures of undoped and Ce-doped TiO2 nanoparticles were observed by scanning tunneling microscopy (STM). The experimental results ...Ce-doped titanium oxide nanoparticles were investigated in the paper. The surface structures of undoped and Ce-doped TiO2 nanoparticles were observed by scanning tunneling microscopy (STM). The experimental results of scanning tunneling spectroscopy (STS) show that the surface electronic structures of TiO2 nanoparticles are modified by introducing new electronic states in the surface band gap through cerium ion doping. The results are discussed in terms of the influence of doping concentration on the surface band gap of TiO2.展开更多
Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method...Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles.展开更多
We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To impro...We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO...The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.展开更多
WO2 and TiO2 colMds were synthesized by the hydrolysis technique and part of the TiO2 colloid was treated by means of the hydrothermal method. The photochromic performances of the resulting materials obtained via comb...WO2 and TiO2 colMds were synthesized by the hydrolysis technique and part of the TiO2 colloid was treated by means of the hydrothermal method. The photochromic performances of the resulting materials obtained via combining the WO3 colloid with the treated TiO2 colloid and the non-treated TiO2 colloid, respectively, are very different. The TiO2 colloid without hydrothermal treatment can effectively improve the photochromic performance of the WO3colloid. The TiO2 nanoparticles were investigated in detail by XRD, TEM, surface photovohage spectra(SPS) and field-induced surface photovoltage spectrometry(FISPS). The photochromism mechanism of WO3 colloid is discussed.展开更多
Ag2O has attracted much recent attention,because of its high photocatalytic activity in the ultraviolet(UV)‐visible region.However,there have been few reports on the near‐infrared(NIR)photocatalytic activity of Ag2O...Ag2O has attracted much recent attention,because of its high photocatalytic activity in the ultraviolet(UV)‐visible region.However,there have been few reports on the near‐infrared(NIR)photocatalytic activity of Ag2O.This paper reports the high NIR photocatalytic activity of Ag2O nanoparticles.Ag2O is unsuitable for application in full‐solar‐spectrum photocatalysis,because it is unstable under UV irradiation.A surface sulfurization process was carried out to address this issue.Specifically,a layer of Ag2S2O7nanoparticles was grown on the surface of the Ag2O nanoparticles,to improve the stability of the Ag2O photocatalyst and enhance its photocatalytic activity in the UV,visible and NIR regions.The Ag2O/Ag2S2O7heterostructure is a stable and efficient full‐solar‐spectrum photocatalyst.It has potential application in the photodegradation of organic pollutants,and more generally in environmental engineering where full utilization of the solar spectrum is required.展开更多
Unique and various microstructures of titanium oxide(TiO_2 ) film including macroporous structure, chromatic veins and rings, have been easily fabricated by mist deposition method on silicon substrate with mild prepar...Unique and various microstructures of titanium oxide(TiO_2 ) film including macroporous structure, chromatic veins and rings, have been easily fabricated by mist deposition method on silicon substrate with mild preparation conditions. Rutile phase TiO_2 nanoparticles were directly used as starting material to prepare film and led to a simple preparation process. It was found that several different microstructures existed in the sample and changed with the varied positions from the center to the edge of the film when the concentration of the TiO_2 suspension is 0.06 mol/l, the deposition time is 30 min, the flow rate is 1 l/min and the temperature is150. The surface texturing shows apparent distinction as the concentration of the TiO_2 suspension decreased to 0.03 mol/l and 0.01 mol/l.展开更多
The surface modified TiO_2 nanoparticles were prepared by using 12-hydroxystearic acid chemically modified on the TiO_2 surface. The average size of the TiO_2 particles is about 30 nm. The optimum ratio of tetrabutyl ...The surface modified TiO_2 nanoparticles were prepared by using 12-hydroxystearic acid chemically modified on the TiO_2 surface. The average size of the TiO_2 particles is about 30 nm. The optimum ratio of tetrabutyl titanate to 12-hydroxystearic acid was 1/0.5. The bonding form between 12-hydroxystearic acid and TiO_2 nucleus was investigated by FTIR, DSC, TGA and XRD techniques. The lubricating grease containing the surface modified TiO_2 nanoparticles possesses excellent anti-wear and anti-friction properties. Compared with the grease without TiO_2, the PB value can be increased by 52% as the best performance of the grease containing surface modified TiO_2 nanoparticles, while the friction coefficient can be reduced by 33% with the addition of a small amount of TiO_2 nanoparticles, and meanwhile the wear scar diameter decreases by 25%.展开更多
基金Financial support by NNSF(20277046)NSF(990274)+1 种基金EPA(1999-14)Sci.and Technol.Proj.(A3030502)of Guangdong and The Key Lab.of Environ.Sci.Technol.of Hennan.
文摘Ag-TiO2/ITO film electrode was used as photoanode to investigate the feasibility of a hybrid technology of Ag nanoparticles combined with the application of anodic bias. The results showed that the deposited Ag and applied anodic bias have an apparent additive effect.
基金Funded by Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘Ag loaded mesoporous silica-embedded TiO_2 nanocomposites were successfully synthesized via two different routes,including one-pot solvothermal method and solvothermal-chemical reduction method,both using Titanium(Ⅳ) n-butoxide(Ti(OC_4H_9)_4) as a precursor,formic acid as a solvent and reducing agent,silver nitrate as a silver source and tetraethyl silicate(TEOS) as a stabilizer.The transmission electron microscopic(TEM) images showed that silica-embedded anatase TiO_2 sample exhibited approximately rhombic shape and Ag nanoparticles could be embedded into the nanocomposites or deposited on the surface with high dispersion.The N_2 adsorption-desorption isotherms indicated that the silica-embedded anatase TiO_2 had obvious mesoporous structure with a BET specific surface area of 203.5 m^2·g^-1.All Ag loaded silica-embedded TiO_2composites showed a higher photocatalytic H2-generation activity from water splitting under simulative solar light irradiation than that of TiO2 products.The maximum H_2 production rate(6.10 mmol·h^-1·g^-1) was obtained over 2%Ag/silica-embedded TiO2 nanocomposites(2%Ag/MST) prepared by solvothermal-chemical reduction method,which was 20 times that achieved on the silica-embedded TiO2 sample.The enhanced photocatalytic H2-evolution activity of Ag loaded mesoporous silica-embedded TiO2 nanocomposites can be attributed to the multi-function of surface Ag co-catalyst,mesoporous structure,and embedding of silica.
基金supported by the National Key R&D Program of China (2017YFA0207301)National Natural Science Foundation of China (No.21725102, No.21471141,No.21601173)+3 种基金CAS Key Research Program of Frontier Sciences(QYZDB-SSWSLH018)CAS Interdisciplinary Innovation Team,Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No.2016FXCX003)Anhui Provincial Natural Science Foundation (No.1608085QB24)Chinese Universities Scientific Fund (WK2310000067)
文摘Photocatalytic reduction of CO2 into various types of fuels has attracted great interest,and serves as a potential solution to addressing current global warming and energy challenges.In this work,Ag-Cu nanoparticles are densely supported on N-doped TiO2 nanowire through a straightforward nanofabrication approach.The range of light absorption by N-doped TiO2 can be tuned to match the plasmonic band of Ag nanoparticles,which allows synergizing a resonant energy transfer process with the Schottky junction.Meanwhile,Cu nanoparticles can provide active sites for the reduction of CO2 molecules.Remarkably,the performance of photocatalytic CO2 reduction is improved to produce CH4 at a rate of 720μmol·g-1·h-1 under full-spectrum irradiation.
基金supported by research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE201127)
文摘The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.
基金Project (2007CB613601) supported by the National Basic Research Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘A new combination method consisting of ball milling, carbothermic reduction and hydrochloric acid leaching was proposed for the preparation of nanosized synthetic rutile from natural ilmenite. The ball milling was employed to grind ilmenite into small particles. The carbothermic reduction was carried out to yield a high titanium slag, which would be easily purified by subsequent leaching procedure. Factors affecting the hydrochloric acid process, namely the leaching time, temperature, and acid concentration, were studied. After leaching and calcining the milled and annealed mixture of FeTiO3/C under the optimal conditions, the TiO2 nanoparticles with size of 10-200 nm and purity〉98.0% were obtained.
文摘Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. The advantages of such spherical TiO2 particles were examined in terms of photovoltaic characteristics of a dye-sensitized solar cell (DSSC) using Orange IV dye as sensitizer. Significantly higher overall solar energy conversion efficiency was obtained for a DSSC using the film of these spherical TiO2 particles, compared with that of a cell using a TiO2 film prepared without surfactant.
基金Project(2010CB631001)supported by the National Basic Research Program of ChinaProject(50871046)supported by the National Natural Science Foundation of China
文摘Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the crystalline structure, chemical valence states and morphology of TiO2 nanoparticles. UV-Vis absorption spectrum was used to measure the optical absorption property of the samples. The photocatalytic performance of the samples was characterized by degrading 20 mg/L methyl orange under UV-Vis irradiation. The results show that the Cu-doped TiO2 nanoparticles exhibit a significant increase in photocatalytic performance over the pure TiO2 nanoparticles, and the TiO2 nanoparticles doped with 1.0% Cu show the best photocatalytic performance. The improvement in photocatalytic performance is attributed to the enhanced light adsorption in UV-Vis range and the decrease of the recombination rate of photoinduced electron-hole oair of the Cu-doped TiO2 nanoparticles.
基金supported by the China Postdoctoral Science Foundation Funded Project (No 20080431217)the Cheung Kong Scholar Program of Education Ministry of China
文摘Increasing application of nanotechnology highlights the need to clarify and understand nanotoxicity. Mammalian and in vitro studies have raised concerns about the toxicity of titanium dioxide nanoparticles (TiO2-NPs), but there are limited data on ecotoxicity to aquatic organisms. In this work, the sub-acute toxicity of TiO2-NPs to carp (Cyprinus carpio) was assessed. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities and lipid peroxidation (LPO) levels in liver, gill and brain tissues of carps varied with concentration of TiO2-NPs suspensions and exposure time (up to 8 d). As a result, 100 and 200 mg/L TiO2-NPs caused statistically significant decrease in SOD, CAT and POD activities and significant increase in LPO levels in tissues (P 〈 0.05), suggesting that the fish exposed to these two concentrations of TiO2-NPs suffered from the oxidative stress. The extent of depletion of antioxidant enzymes activities and the elevation of LPO in the liver was the greatest, indicating that the liver might be the most susceptible organ to TiO2-NPs exposure. In addition, carps had gill pathologies including edema and thickening of gill lamellae as well as gill filaments, and liver pathologies including necrotic and apoptosis hepatocytes after exposed to 100 and 200 mg/L TiO2-NPs for 20 d. These results indicated a potential risk from TiO2-NPs released into the aqueous environment.
基金Project(51346007) supported by the National Natural Science Foundation of China
文摘There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study, the thermal conductivity values of heat transfer oil and TiO2 nano-oil in the above high temperature range were measured by a newly developed high-temperature thermal conductivity meter. Based on the principle of least square method, the thermal conductivity values obtained from experiments were fitted separately, and the correlation between thermal conductivity and temperature of heat transfer oil and TiO2 nano-oil was obtained. The results show that the thermal conductivity and the increased percentage of thermal conductivity of TiO2 nano-oil are proportional to the increase of particle size and mass fraction of nanoparticles, but thermal conductivity is in reverse proportion to the increase of temperature and the increased percentage of thermal conductivity is less affected by temperature.
文摘Ce-doped titanium oxide nanoparticles were investigated in the paper. The surface structures of undoped and Ce-doped TiO2 nanoparticles were observed by scanning tunneling microscopy (STM). The experimental results of scanning tunneling spectroscopy (STS) show that the surface electronic structures of TiO2 nanoparticles are modified by introducing new electronic states in the surface band gap through cerium ion doping. The results are discussed in terms of the influence of doping concentration on the surface band gap of TiO2.
基金supported by the National Natural Science Foundation of China(21673142,21477164)the National High Technology Research and Development Program of China(863 Program,2015AA030903)~~
文摘Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles.
基金supported in part by the National Natural Science Foundation of China(21471043,21304028,51403195,31501576)~~
文摘We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.
基金the 11th Five-Year Supporting Programs of Science and Technology (No. 2006BAD04A12)
文摘The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.
文摘WO2 and TiO2 colMds were synthesized by the hydrolysis technique and part of the TiO2 colloid was treated by means of the hydrothermal method. The photochromic performances of the resulting materials obtained via combining the WO3 colloid with the treated TiO2 colloid and the non-treated TiO2 colloid, respectively, are very different. The TiO2 colloid without hydrothermal treatment can effectively improve the photochromic performance of the WO3colloid. The TiO2 nanoparticles were investigated in detail by XRD, TEM, surface photovohage spectra(SPS) and field-induced surface photovoltage spectrometry(FISPS). The photochromism mechanism of WO3 colloid is discussed.
基金supported by the National Natural Science Foundation of China(51372142)the Innovation Research Group(51321091)the Program of Introducing Talents of Discipline to Universities in China(111 program,b06015)~~
文摘Ag2O has attracted much recent attention,because of its high photocatalytic activity in the ultraviolet(UV)‐visible region.However,there have been few reports on the near‐infrared(NIR)photocatalytic activity of Ag2O.This paper reports the high NIR photocatalytic activity of Ag2O nanoparticles.Ag2O is unsuitable for application in full‐solar‐spectrum photocatalysis,because it is unstable under UV irradiation.A surface sulfurization process was carried out to address this issue.Specifically,a layer of Ag2S2O7nanoparticles was grown on the surface of the Ag2O nanoparticles,to improve the stability of the Ag2O photocatalyst and enhance its photocatalytic activity in the UV,visible and NIR regions.The Ag2O/Ag2S2O7heterostructure is a stable and efficient full‐solar‐spectrum photocatalyst.It has potential application in the photodegradation of organic pollutants,and more generally in environmental engineering where full utilization of the solar spectrum is required.
基金supported by a Grant-in-Aid for Scientific Research on Innovative Areas "New Polymeric Materials Based on Element-Blocks (No. 2401)" (24102004) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan
文摘Unique and various microstructures of titanium oxide(TiO_2 ) film including macroporous structure, chromatic veins and rings, have been easily fabricated by mist deposition method on silicon substrate with mild preparation conditions. Rutile phase TiO_2 nanoparticles were directly used as starting material to prepare film and led to a simple preparation process. It was found that several different microstructures existed in the sample and changed with the varied positions from the center to the edge of the film when the concentration of the TiO_2 suspension is 0.06 mol/l, the deposition time is 30 min, the flow rate is 1 l/min and the temperature is150. The surface texturing shows apparent distinction as the concentration of the TiO_2 suspension decreased to 0.03 mol/l and 0.01 mol/l.
文摘The surface modified TiO_2 nanoparticles were prepared by using 12-hydroxystearic acid chemically modified on the TiO_2 surface. The average size of the TiO_2 particles is about 30 nm. The optimum ratio of tetrabutyl titanate to 12-hydroxystearic acid was 1/0.5. The bonding form between 12-hydroxystearic acid and TiO_2 nucleus was investigated by FTIR, DSC, TGA and XRD techniques. The lubricating grease containing the surface modified TiO_2 nanoparticles possesses excellent anti-wear and anti-friction properties. Compared with the grease without TiO_2, the PB value can be increased by 52% as the best performance of the grease containing surface modified TiO_2 nanoparticles, while the friction coefficient can be reduced by 33% with the addition of a small amount of TiO_2 nanoparticles, and meanwhile the wear scar diameter decreases by 25%.