The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the ...The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the measurement of waveforms in the contact voltage under the load of direct current(DC) 6 V(8-20 A)and breaking speed of 50.0 mm·s^(-1).A part of the observed results was presented as well as surface morphology of the contacts after electrical contact behavior,which shows some interesting and new phenomena.Molten bridges and arc could exist simultaneously.The stable molten bridge looks like cylindrical shape and then becomes needle tip at its rupture,the diameter and length of molten bridges both increase with the increase in current and the growth gradient of the diameter is larger than that of the length.The morphology and elemental distribution of the contact surface are changed by the behavior of electrical contact.展开更多
Ag–CdO composites are still one of the most commonly used electrical contact materials in low-voltage applications owing to their excellent electrical and mechanical properties.Nevertheless,considering the restrictio...Ag–CdO composites are still one of the most commonly used electrical contact materials in low-voltage applications owing to their excellent electrical and mechanical properties.Nevertheless,considering the restriction on using Cd due to its toxicity,it is necessary to find alternative materials that can replace these composites.In this study,the synthesis of Ag-ZnO alloys from Ag-Zn solid solutions was investigated by hot mechanochemical processing.The hot mechanochemical processing was conducted in a modified attritor mill at 138℃under flowing O2 at 1200 cm3/min for 3.0 h.The microstructure and phase evolution were investigated using X-ray diffractometry,field emission gun scanning electron microscopy and transmission electron microscopy.The results suggest that it is possible to complete the oxidation of Ag-Zn solid solution by hot mechanochemical processing at a low temperature and short time.This novel synthesis route can produce Ag-ZnO composites with a homogeneous distribution of nanoscale ZnO precipitates,which is impossible to achieve using the conventional material processing methods.Considering the fact that the fundamental approach to improving electric contact material performance resides in obtaining uniform dispersion of the second-phase in the Ag matrix,this new processing route could open the possibility for Ag-ZnO composites to replace non-environmentally friendly Ag-CdO.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51461023, 51267007,51164015,U1302272,515070575 and U1602275)the Natural Science Foundation of Yunnan Province (Nos.2010CD126, 2012FB195 and 2015FA042)+3 种基金the Yunnan Applied Basic Research Projects (No.2014FB164)the Innovation Team of Yunnan Province (No.2012HC027)the Technology innovation talents of Yunnan Province (No.2015HB024)the Fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No.SKL-SPM-201526)。
文摘The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the measurement of waveforms in the contact voltage under the load of direct current(DC) 6 V(8-20 A)and breaking speed of 50.0 mm·s^(-1).A part of the observed results was presented as well as surface morphology of the contacts after electrical contact behavior,which shows some interesting and new phenomena.Molten bridges and arc could exist simultaneously.The stable molten bridge looks like cylindrical shape and then becomes needle tip at its rupture,the diameter and length of molten bridges both increase with the increase in current and the growth gradient of the diameter is larger than that of the length.The morphology and elemental distribution of the contact surface are changed by the behavior of electrical contact.
基金financially supported by the FONDECYT(Project No.11100284)the Metallurgy Department of University of Atacama for the XRD and SEM analysis(Projects EQM130125 and EQUV 003)
文摘Ag–CdO composites are still one of the most commonly used electrical contact materials in low-voltage applications owing to their excellent electrical and mechanical properties.Nevertheless,considering the restriction on using Cd due to its toxicity,it is necessary to find alternative materials that can replace these composites.In this study,the synthesis of Ag-ZnO alloys from Ag-Zn solid solutions was investigated by hot mechanochemical processing.The hot mechanochemical processing was conducted in a modified attritor mill at 138℃under flowing O2 at 1200 cm3/min for 3.0 h.The microstructure and phase evolution were investigated using X-ray diffractometry,field emission gun scanning electron microscopy and transmission electron microscopy.The results suggest that it is possible to complete the oxidation of Ag-Zn solid solution by hot mechanochemical processing at a low temperature and short time.This novel synthesis route can produce Ag-ZnO composites with a homogeneous distribution of nanoscale ZnO precipitates,which is impossible to achieve using the conventional material processing methods.Considering the fact that the fundamental approach to improving electric contact material performance resides in obtaining uniform dispersion of the second-phase in the Ag matrix,this new processing route could open the possibility for Ag-ZnO composites to replace non-environmentally friendly Ag-CdO.