Inorganic antibacterial materials consist of the antibacterial ions, the additives and the carrier. In this study, we synthesized a new inorganic antibacterialmaterial, of which Cu2+ and Ag+ were selected to be the bi...Inorganic antibacterial materials consist of the antibacterial ions, the additives and the carrier. In this study, we synthesized a new inorganic antibacterialmaterial, of which Cu2+ and Ag+ were selected to be the bi-component antibacterial ions, cerous nitrate served as the additives, and the white carbon black was chosen as the carrier, which was prepared by a sol-gel method. The as-synthesized antibacterial material was characterized by inductively coupled plasma, particle size measurement instrument, scanning electron microscope and enumeration tests. The result showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the single-ion inorganic antibacterial material. In addition, the particle size of this material can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are its loose and dispersive structure, good thermal and light stability. From the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.展开更多
Quantitatively evaluation of antibacterial activities of inorganic antibacterial agents is an urgent problem to be solved. Using experimental data by an orthogonal design, a prediction model of the relation between co...Quantitatively evaluation of antibacterial activities of inorganic antibacterial agents is an urgent problem to be solved. Using experimental data by an orthogonal design, a prediction model of the relation between conditions of preparing inorganic antibacterial agents and their antibacterial activities has been developed. This is accomplished by introducing BP artificial neural networks in the study of inorganic antibacterial agents. It provides a theoretical support for the development and research on inorganic antibacterial agents. Key words inorganic antibacterial agent - antibacterial activity - neural networks - nanometer material展开更多
The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used ...The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used to prepare the white carbon black carrier. Ag+ was selected to be the antibacterial ion, and cerous nitrate was selected to be the additive. They were synthesized on the white carbon black carrier. The structures and properties of antibacterial material were characterized by inductively coupled plasma, particle size measurement instrument, fourier transform infrared and enumeration tests (Escherichia coli as experimental bacterium). Results showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the general Ag-antibacterial white carbon black (without containing rare earth). Ag+ was bound to white carbon black by ion exchange process and adsorption process. Bacteriostasis rate is over 99%, and the particle size can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are good thermal and light stability. Furthermore, from the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.展开更多
The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solut...The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solution zinc concentration was 1.2-2.0 mol/L,and the ratio of Zn solution to zeolite weight was 5:1.The final stable product was manufactured after baking in an oven for 1-3 h at the temperature of 500-900 ℃.The baked material was tested for its disinfection effectiveness and coloring effect when mixed with paint coating.Based on the final batch of tests,the zinc content of this anti-microbial product was further optimized.展开更多
A Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize the preparation of the Zn-Sm antibacterial white carbon black by the sol-gel method. The statistical analysis of the results sh...A Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize the preparation of the Zn-Sm antibacterial white carbon black by the sol-gel method. The statistical analysis of the results showed that the particle size of the Zn-Sm antibacterial white carbon black was significantly affected by the reaction time, reaction temperature and the stirring speed. According to analysis of variance (ANOVA), the values of the determination coefficient (R2=0.9821) and the "Pred R-Squared" of 0.8227 were in reasonable agreement with the "Adj R-Squared" of 0.9591. It was indicated that this model could be used to navigate the design space. The optimized reaction time, temperature and the stirring speed were 0.88 h, 87.83 ℃, and 473.45 r/rain, respectively. In addition, the bacteriostasis rate of the product was about 97.92%.展开更多
An inorganic nanomaterials combination of Sm, Ag, and TiO2 was synthesized using supercritical fluid drying (SCFD) combined with solgel techniques. The structure, photocatalysis and bacteriostatic activity of the ma...An inorganic nanomaterials combination of Sm, Ag, and TiO2 was synthesized using supercritical fluid drying (SCFD) combined with solgel techniques. The structure, photocatalysis and bacteriostatic activity of the materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XRPS), photocatalytic performance, and antibacterial activity experiments. The XRD results showed that the average particle diameter of Sm/Ag/TiO2 was 14.62 nm and Ag and Sm ions were dispersed on the surface of TiO2 in a highly dispersed, amorphous form. The TEM image showed that the size of the particle was 12 nm using the scherer formula. The XPS result showed that the element Sm was doped and Ag was loaded inorganic nanomaterials successfully. Sm/Ag/TiO2 exhibited optimal photocatalytic properties at 600 oC, the photocatalytic optimal proportion of Sm/Ag/TiO2 was 2:2:100. When the molar ratio was 2:2:100, the bacteriostatic circle diameter was 16 mm for Staphylococcus aureus, the minimum bacteriostatic concentration was 200μg/mL for white beads coccus, and the minimum bactericidal concentration was 2×10^4μg/mL for white beads coccus. The SEM results showed that the antibacterial material attached to the candida albicans cell surface, cells appeared fold deformation. Therefore the inorganic nanomaterials Sm/Ag/TiO2 had high temperature resistance, good photocatalytic and antibacterial characteristics in visible light.展开更多
In this paper a kind of new inorganic antibacterial material:Cu-antibacterial white carbon black containing lanthanum was synthesized.The characterization and antimicrobial effect of the Cu-antibacterial white carbon ...In this paper a kind of new inorganic antibacterial material:Cu-antibacterial white carbon black containing lanthanum was synthesized.The characterization and antimicrobial effect of the Cu-antibacterial white carbon black containing lanthanum was investigated.Inorganic antibiotic materials comprised the carrier,the antibacterial ion and the additive.In this study,we choosed white carbon black as the carrier,which was compound by a sol-gel method.Copper ion was selected to be the antibacterial ion,and lanthanum nitrate was selected to be the additive.The as-synthesized Cu-La-antibacterial white carbon black was characterized by inductively coupled plasma(ICP),laser particle size analyzer,Fourier transform infra-red spectroscopy(FT-IR) and antibacterial activity test(Escherichia coli as experimental bacterium).Results showed that the amount of antibacterial ions of the Cu-La-antibacterial white carbon black was higher than that for the general Cu-antibacterial white carbon black.Its bacteriostasis rate was about 98%(when the content of Cu2+ was about 3%),and corresponded to Ag-antibacterial white carbon black(99%).The particle size of Cu-La-antibacterial white carbon black was under 30 μm with a narrow size distribution.Copper ion was bound to white carbon black by ion exchange process.Moreover,this new inorganic antibacterial material showed promising result on the coating surface of metal.展开更多
基金the National Nature Science Foundation of China (50574045)the Specialized Research Fundfor the Doctoral Program of Higher Education (20050674003)the Science Research Fund of Yunnan Provincial Department of Education(07Y41398)
文摘Inorganic antibacterial materials consist of the antibacterial ions, the additives and the carrier. In this study, we synthesized a new inorganic antibacterialmaterial, of which Cu2+ and Ag+ were selected to be the bi-component antibacterial ions, cerous nitrate served as the additives, and the white carbon black was chosen as the carrier, which was prepared by a sol-gel method. The as-synthesized antibacterial material was characterized by inductively coupled plasma, particle size measurement instrument, scanning electron microscope and enumeration tests. The result showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the single-ion inorganic antibacterial material. In addition, the particle size of this material can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are its loose and dispersive structure, good thermal and light stability. From the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.
文摘Quantitatively evaluation of antibacterial activities of inorganic antibacterial agents is an urgent problem to be solved. Using experimental data by an orthogonal design, a prediction model of the relation between conditions of preparing inorganic antibacterial agents and their antibacterial activities has been developed. This is accomplished by introducing BP artificial neural networks in the study of inorganic antibacterial agents. It provides a theoretical support for the development and research on inorganic antibacterial agents. Key words inorganic antibacterial agent - antibacterial activity - neural networks - nanometer material
基金National Nature Science Foundation of China (50574045)Specialized Research Fund for the Doctoral Program of Higher Education (20050674003)the Science Research Fund of Yunnan Provincial Department of Education (07Y41398)
文摘The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used to prepare the white carbon black carrier. Ag+ was selected to be the antibacterial ion, and cerous nitrate was selected to be the additive. They were synthesized on the white carbon black carrier. The structures and properties of antibacterial material were characterized by inductively coupled plasma, particle size measurement instrument, fourier transform infrared and enumeration tests (Escherichia coli as experimental bacterium). Results showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the general Ag-antibacterial white carbon black (without containing rare earth). Ag+ was bound to white carbon black by ion exchange process and adsorption process. Bacteriostasis rate is over 99%, and the particle size can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are good thermal and light stability. Furthermore, from the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.
基金Funded by the Construct Plan of Cooperation Project from the Beijing Education Committee(No. XK100080432)
文摘The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solution zinc concentration was 1.2-2.0 mol/L,and the ratio of Zn solution to zeolite weight was 5:1.The final stable product was manufactured after baking in an oven for 1-3 h at the temperature of 500-900 ℃.The baked material was tested for its disinfection effectiveness and coloring effect when mixed with paint coating.Based on the final batch of tests,the zinc content of this anti-microbial product was further optimized.
基金Project supported by Yunnan Provincial Department of Education(2012Z102)
文摘A Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize the preparation of the Zn-Sm antibacterial white carbon black by the sol-gel method. The statistical analysis of the results showed that the particle size of the Zn-Sm antibacterial white carbon black was significantly affected by the reaction time, reaction temperature and the stirring speed. According to analysis of variance (ANOVA), the values of the determination coefficient (R2=0.9821) and the "Pred R-Squared" of 0.8227 were in reasonable agreement with the "Adj R-Squared" of 0.9591. It was indicated that this model could be used to navigate the design space. The optimized reaction time, temperature and the stirring speed were 0.88 h, 87.83 ℃, and 473.45 r/rain, respectively. In addition, the bacteriostasis rate of the product was about 97.92%.
基金supported by National Natural Science Foundation of China(21346006)National College Students' Innovation and Entrepreneurship Training Major Project(201310222013)+3 种基金the Department of Scientific Research Projects in Heilongjiang Province(B201015)Scientific Research Project in Heilongjiang Province’s Department of Education(125418211254178312543078)
文摘An inorganic nanomaterials combination of Sm, Ag, and TiO2 was synthesized using supercritical fluid drying (SCFD) combined with solgel techniques. The structure, photocatalysis and bacteriostatic activity of the materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XRPS), photocatalytic performance, and antibacterial activity experiments. The XRD results showed that the average particle diameter of Sm/Ag/TiO2 was 14.62 nm and Ag and Sm ions were dispersed on the surface of TiO2 in a highly dispersed, amorphous form. The TEM image showed that the size of the particle was 12 nm using the scherer formula. The XPS result showed that the element Sm was doped and Ag was loaded inorganic nanomaterials successfully. Sm/Ag/TiO2 exhibited optimal photocatalytic properties at 600 oC, the photocatalytic optimal proportion of Sm/Ag/TiO2 was 2:2:100. When the molar ratio was 2:2:100, the bacteriostatic circle diameter was 16 mm for Staphylococcus aureus, the minimum bacteriostatic concentration was 200μg/mL for white beads coccus, and the minimum bactericidal concentration was 2×10^4μg/mL for white beads coccus. The SEM results showed that the antibacterial material attached to the candida albicans cell surface, cells appeared fold deformation. Therefore the inorganic nanomaterials Sm/Ag/TiO2 had high temperature resistance, good photocatalytic and antibacterial characteristics in visible light.
基金Project supported by the Natural Science Foundation of Yunnan Province (2009ZC040M)the Science Research Fund of Yunnan Provincial Department of Education (07Y41398)the National College Students Innovative Experimental Foundation of China (091067437)
文摘In this paper a kind of new inorganic antibacterial material:Cu-antibacterial white carbon black containing lanthanum was synthesized.The characterization and antimicrobial effect of the Cu-antibacterial white carbon black containing lanthanum was investigated.Inorganic antibiotic materials comprised the carrier,the antibacterial ion and the additive.In this study,we choosed white carbon black as the carrier,which was compound by a sol-gel method.Copper ion was selected to be the antibacterial ion,and lanthanum nitrate was selected to be the additive.The as-synthesized Cu-La-antibacterial white carbon black was characterized by inductively coupled plasma(ICP),laser particle size analyzer,Fourier transform infra-red spectroscopy(FT-IR) and antibacterial activity test(Escherichia coli as experimental bacterium).Results showed that the amount of antibacterial ions of the Cu-La-antibacterial white carbon black was higher than that for the general Cu-antibacterial white carbon black.Its bacteriostasis rate was about 98%(when the content of Cu2+ was about 3%),and corresponded to Ag-antibacterial white carbon black(99%).The particle size of Cu-La-antibacterial white carbon black was under 30 μm with a narrow size distribution.Copper ion was bound to white carbon black by ion exchange process.Moreover,this new inorganic antibacterial material showed promising result on the coating surface of metal.