The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c...The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.展开更多
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob...Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.展开更多
Photodynamic therapy(PDT) employs accumulation of photosensitizers(PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of P...Photodynamic therapy(PDT) employs accumulation of photosensitizers(PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of PDT depends on optimal PS dosage that is matched with the ideal power of light. This in turn depends on PS accumulation in target tissue and light administration time and period.As theranostic nanomedicine is driven by multifunctional therapeutics that aim to achieve targeted tissue delivery and image-guided therapy, fluorescent PS nanoparticle(NP)accumulation in target tissues can be ascertained through fluorescence imaging to optimize the light dose and administration parameters. In this regard, zebrafish larvae provide a unique transparent in vivo platform to monitor fluorescent PS bio-distribution and their therapeutic efficiency. Using fluorescent PS NPs with unique aggregation-induced emission characteristics, we demonstrate for the first time the real-time visualization of polymeric NP accumulation in tumor tissue and, more importantly, the best time to conduct PDT using transgenic zebrafish larvae with inducible liver hyperplasia as an example.展开更多
Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the...Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the deep tisue.However,the weak three photon fluorescence signals may be not well presented in the traditional fuorescence intensity imaging mode.Fluorescence lifetime of certain probes is insensitive to the intensity of the excitation laser.Moreover,fluorescence lifetimne imaging microscopy(FLIM)can detect weak signals by utilizing time correlated single photon counting(TCSPC)technique.Thus,it would be an improved strategy to combine the 3PFM imaging with the FLIM together.Herein,DCDPP-2TPA,a novel agegation-induced emission luminogen(AIEgen),was adopted as the fluorescent probes.The three-photon absorption cros-section of the AlEgen,which has a deep-red fluorescence emission,was proved to be large.DCDPP-2TPA nanoparticles were synthesized,and the three photon fluorescence lifetime of which was measured in water.Moreover,in vrivo thre-photon fuorescence lifetime microscopic imaging of a craniotomy mouse was conducted via a home made optical system.High contrast cerebrovascular images of different vertical depths were obtained and the maximun depth was about 600 pumn.Even reaching the depth of 600 pum,tiny capillary vessels as small as 1.9 pum could still be distinguished.The three photon fuorescence lifetimes of the capillaries in some representative images were in accord with that of DCDPP-2TPA nanoparticles in water.A vivid 3D reconstruction was further organized to present a wealth of lifetime information.In the future,the combination strategy of 3PFM and FLIM could be further applied in the brain functional imaging.展开更多
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona...Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.展开更多
The luminescence property of 2,7-diphenyl-fluorenone(DPFO)was previously reported to be very unusual with a large aggregationinduced effect associated with a fluorescence redshift of 150 nm.The phenomenon is reexamine...The luminescence property of 2,7-diphenyl-fluorenone(DPFO)was previously reported to be very unusual with a large aggregationinduced effect associated with a fluorescence redshift of 150 nm.The phenomenon is reexamined in this work.It is found that the abnormal observations are caused by the presence of a trace amount of impurity 2,7-diphenyl-fluorene(DPF)in the as-synthesized DPFO.The pure DPFO molecule does have an intense fluorescence(FL)in solid(528 nm),about 4−5 times larger than in its dilute dichloromethane solutions(542 nm),but with a blueshifted rather than redshifted FL wavelength in solid.The enormous FL enhancement and redshifted FL wavelength of the as-synthesized DPFO solid are due to the presence of impurity DPF.The FL of DPF is much stronger than that of DPFO in dilute solutions and it also has shorter FL wavelengths.In a dilute solution of DPFO with a trace amount of DPF(∼1%),the dominant FL peaks are from DPF.Because the electronic absorption peaks of DPF overlaps with DPFO,the electronic energy of DPF can transfer to DPFO.The energy transfer is faster with the increase of concentration because DPF and surrounding DPFO molecules become closer,which quenches the FL of DPF(356 and 372 nm)and enhances the FL of DPFO(542 nm in solution and 528 nm in solid).Therefore,at high concentrations or in solids,only peak at about 542 or 528 nm shows up,and peaks at 356 and 372 nm disappear.展开更多
Fluorogens with aggregation-induced emission (AIE) characteristics have recently been widely applied for studying biological events, and fluorogens with “smart” properties are especially desirable. Herein, we ration...Fluorogens with aggregation-induced emission (AIE) characteristics have recently been widely applied for studying biological events, and fluorogens with “smart” properties are especially desirable. Herein, we rationally designed and synthesized a biotinylated and reduction-activatable probe (Cys(StBu)-Lys(biotin)-Lys(TPE)-CBT (1)) with AIE properties for cancer-targeted imaging. The biotinylated probe 1 can be actively uptaken by the biotin receptor-overexpressing cancer cells, and then “smartly” self-assemble into nanoparticles inside cells and turn the fluorescence “On”. Employing this “smart” strategy, we successfully applied probe 1 for cancer-targeted imaging. We envision that this biotinylated intelligent probe 1 might be further developed for cancer-targeted imaging in routine clinical studies in the near future.展开更多
Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation...Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation-induced emission luminogens(AIEgens)can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout.First,we developed a series of luminogens(i.e.,tetraphenyl ethylene(TPE)-NH_(2),TPE-2NH_(2),TPE-4NH_(2),TPE-COOH,TPE-2COOH,TPE-4COOH,and TPE-Ketoalkyne),each of which was then evenly mixed with MSU crystals.Next,optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope(CLSM).This approach was used for imaging standard samples of MSU,hydroxyapatite(HAP)crystals,and mixed samples with 1:1 mass ratio of MSU/HAP.We also imaged samples from mouse models of acute gouty arthritis,HAP deposition disease,and comorbidities of interest.Subsequently,CLSM imaging results were compared with those of compensated polarized light microscopy,and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line.Finally,CLSM time series and three-dimensional imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi.As a promising candidate for MSU crystal labeling,TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples,animal samples,and human samples,and could precisely distinguish gout from HAP deposition disease.This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases.展开更多
Polymer thermodynamics and kinetics are important components in the basic theory of polymer physics, which provide critical support for polymer processing and molding. As an important thermal analysis technology, diff...Polymer thermodynamics and kinetics are important components in the basic theory of polymer physics, which provide critical support for polymer processing and molding. As an important thermal analysis technology, differential scanning calorimetry(DSC) is a key way to explore the molecular motion of polymer chains, molecular structure, and condensed structure, greatly promoting the development of polymer materials. However, this technique is limited by its ambiguous results, because of inaccurate heat flow measurement and high parameter dependence. As an alternative strategy, aggregation-induced emission luminogens(AIEgens) have been extensively applied in various targets analysis and process monitoring, owing to their weak intermolecular interactions and highly twisted conformation. The optical properties of AIEgens are highly sensitive to the variations of the polymer microenvironment, including characteristic transition, crosslinking reaction, crystallization behavior, and phase separation. In this review, the progress of AIE technology in visualizing polymer molecular motion and structure evolution is summarized, compensating for the limitation of the traditional DSC method to facilitate further research in polymer science and engineering.展开更多
The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of ...The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.展开更多
The Kaiser effect is formally described as the absence of detectable acoustic emission (AE) events until the load imposed on the material exceeds the previous applied level and is usually used to estimate geostress....The Kaiser effect is formally described as the absence of detectable acoustic emission (AE) events until the load imposed on the material exceeds the previous applied level and is usually used to estimate geostress. By focusing on the heterogeneity of rock material, the mechanism of the Kaiser effect under cyclic loading is analyzed based on statistic damage mechanics. Two groups of granite specimens have been cyclically loaded with two different loading paths to verify the theoretical results. The heterogeneity of rock is the real reason that causes irrecoverable damage on the Kaiser effect of acoustic emission in cyclic loading. The Kaiser effect reflects the damaged state in rocks rather than the previous stress imposed on it. Applications for using the Kaiser effect to estimate geostress were discussed here. It is shown that the commonly used uniaxial loading method for estimating geostress is not in accor- dance with the theoretical and experimental results. The analysis is of importance to use the Kaiser effect correctly for estimating geostress or in other fields. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex...Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interracial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.展开更多
There are numerous studies comparing different kinds of environmental taxes and standards.However,forms of environmental standards focused by former researchers are usually quantitybased limits/standards(e.g.pounds pe...There are numerous studies comparing different kinds of environmental taxes and standards.However,forms of environmental standards focused by former researchers are usually quantitybased limits/standards(e.g.pounds per day or pounds per unit of output).Concentration-based emission standard(e.g.milligrams per liter of wastewater) as one important form of environmental standard has not been given much attention.In this article,comparable estimates of their probable effect on enterprise pollution reduction will be developed for concentrationbased effluent standards,effluent taxes,and a combination of both.A linear simulation model is used to clearly and obviously compare the effects of effluent taxes and concentration-based standards within the same figure.With one detailed application to the paper industry,some enlightenment and conclusions-as well as the general applicability of these principles-are then provided:Under the same effluent tax rate,enterprises,groups,and industries that are cleaner will reduce more pollutants than those that have higher pollutant abatement costs.It is recommended that effluent taxes are set by avoiding cutting it even at one stroke and considering the feasibility of pollution-reducing technology in various industries.It is necessary to reduce MAC of enterprises to better stimulate enterprises' or industries' emission reduction by preferential measures,such as high tax rate coordinated by speeding up the depreciation of environmental protection equipment.展开更多
Based on Chinese provincial panel data from 2003 to 2014,the spatial dependence between the environment regulation and carbon emissions is tested by spatial autocorrelation analysis. Besides,spatial lag model and spat...Based on Chinese provincial panel data from 2003 to 2014,the spatial dependence between the environment regulation and carbon emissions is tested by spatial autocorrelation analysis. Besides,spatial lag model and spatial error model are built to empirically test the marginal effect of environmental regulation on carbon emissions and its spatial effect. The result shows that the influence trajectory of environmental regulation on carbon emissions performances inverted " U" type. It is " green paradox effect" before the inflection point and " reversed transmission reduction effect" after the inflection point. Moreover,the carbon emissions show significant spatial spillover effect. In order to achieve the desired effect of environmental regulation and promote carbon reduction,we should increase the environmental regulation intensity reasonably,select rational environmental regulation policy tools,and sufficiently consider the spatial spillover effect of carbon emissions.展开更多
China has recently implemented a dual-carbon strategy to combat climate change and other environmental issues and is committed to modernizing it sustainably.This paper supports these goals and explores how the digital...China has recently implemented a dual-carbon strategy to combat climate change and other environmental issues and is committed to modernizing it sustainably.This paper supports these goals and explores how the digital economy and green finance intersect and impact carbon emissions.Using panel data from 30 Chinese provinces over the period 2011-2021,this paper finds that the digital economy and green finance can together reduce carbon emissions,and conducts several robustness tests supporting this conclusion.A heterogeneity analysis shows that these synergistic effects are more important in regions with low levels of social consumption Meanwhile,in the spatial dimension,the synergistic effect of the local digital economy and green finance adversely impacts the level of carbon emissions in surrounding areas.The findings of this paper provide insights for policymakers in guiding capital flow and implementing carbon-reduction policies while fostering the growth of China’s digital economy and environmental sustainability.展开更多
In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grai...In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.展开更多
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissi...Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.展开更多
Insufficient assessment of emission reduction effects still exists in the carbon emission rights trading system,a major environmental regulation measure in China.Based on the data from the carbon trading pilot coverin...Insufficient assessment of emission reduction effects still exists in the carbon emission rights trading system,a major environmental regulation measure in China.Based on the data from the carbon trading pilot covering the years from 2007 to 2017,this study combined the synthetic control method with dynamic spatial Durbin model to comprehensively evaluate the spatial emission reduction effects of carbon trading policies.The results showed that:①The carbon trading policies promoted carbon emission reductions in the pilot regions,among which Tianjin and Hubei responded significantly,and also helped to suppress carbon emissions in the neighboring areas.②Long-term emission reduction effect from carbon emissions trading became gradually significant,while the indirect emission reduction effect was relatively weaker.③In term of reducing carbon emissions,the economic development channel played a key role,but it had a threat to the promotion of carbon emissions in the surrounding areas.Energy consumption was the main obstacle to the growth of carbon emissions.④In the long run,technological progress tended to become the key to the effective implementation of potential emission reduction effects of carbon trading policies.Based on the above findings,we suggest that the construction of a national carbon trading market should be promoted,the balanced development and orderly advancement of regional carbon trading markets should be paid attention to,the coordinated development of green economy as well as knowledge and technology exchange and cooperation among regions should be strengthened to form a low carbon development model among regions.展开更多
Shielding effect and emission criterion of a screw dislocation near an interracial crisscross crack are dealt within this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for com...Shielding effect and emission criterion of a screw dislocation near an interracial crisscross crack are dealt within this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentialsand stress fields due to a screw dislocation located near the interracial crisscross crack. The stress intensity factor onthe crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of theorientation of the dislocation and the morphology of the crisscross crack as well as the material elastic dissimilarity onthe shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations canreduce the stress intensity factor of the interracial crisscross crack tip (shielding effect). The shielding effect increases withthe increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuthangle and the distance between the dislocation and the crack tip. The critical loads at infinity for dislocation emissionincreases with the increase of emission angle and the vertical length of the crisscross crack, and the most probable anglefor screw dislocation emission is zero. The present solutions contain previous results as special cases.展开更多
基金finically supported by the National Natural Science Foundation of China(62350054,12374379,12174152,12304462)the Foundation of National Key Laboratory(***202302011)。
文摘The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.
基金Under the auspices of National Natural Science Foundation of China(No.42171230)。
文摘Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.
基金financial support from National Research Foundation Investigatorship (R279-000-444-281)National University of Singapore (R279-000-482-133)
文摘Photodynamic therapy(PDT) employs accumulation of photosensitizers(PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of PDT depends on optimal PS dosage that is matched with the ideal power of light. This in turn depends on PS accumulation in target tissue and light administration time and period.As theranostic nanomedicine is driven by multifunctional therapeutics that aim to achieve targeted tissue delivery and image-guided therapy, fluorescent PS nanoparticle(NP)accumulation in target tissues can be ascertained through fluorescence imaging to optimize the light dose and administration parameters. In this regard, zebrafish larvae provide a unique transparent in vivo platform to monitor fluorescent PS bio-distribution and their therapeutic efficiency. Using fluorescent PS NPs with unique aggregation-induced emission characteristics, we demonstrate for the first time the real-time visualization of polymeric NP accumulation in tumor tissue and, more importantly, the best time to conduct PDT using transgenic zebrafish larvae with inducible liver hyperplasia as an example.
基金supported by National Natural Science Foundation of China(61735016)Zhejiang Provincial Natural Science Foundation of China(LR17F050001).
文摘Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the deep tisue.However,the weak three photon fluorescence signals may be not well presented in the traditional fuorescence intensity imaging mode.Fluorescence lifetime of certain probes is insensitive to the intensity of the excitation laser.Moreover,fluorescence lifetimne imaging microscopy(FLIM)can detect weak signals by utilizing time correlated single photon counting(TCSPC)technique.Thus,it would be an improved strategy to combine the 3PFM imaging with the FLIM together.Herein,DCDPP-2TPA,a novel agegation-induced emission luminogen(AIEgen),was adopted as the fluorescent probes.The three-photon absorption cros-section of the AlEgen,which has a deep-red fluorescence emission,was proved to be large.DCDPP-2TPA nanoparticles were synthesized,and the three photon fluorescence lifetime of which was measured in water.Moreover,in vrivo thre-photon fuorescence lifetime microscopic imaging of a craniotomy mouse was conducted via a home made optical system.High contrast cerebrovascular images of different vertical depths were obtained and the maximun depth was about 600 pumn.Even reaching the depth of 600 pum,tiny capillary vessels as small as 1.9 pum could still be distinguished.The three photon fuorescence lifetimes of the capillaries in some representative images were in accord with that of DCDPP-2TPA nanoparticles in water.A vivid 3D reconstruction was further organized to present a wealth of lifetime information.In the future,the combination strategy of 3PFM and FLIM could be further applied in the brain functional imaging.
基金supported by the National Natural Science Foundation of China (No.51773190 and No.51973206)。
文摘Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.
基金supported by the National Natural Science Foundation of China(No.21627805,No.21673004,No.21804004,and No.21821004)Ministry of Science and Technology of China(No.2017YFA0204702)。
文摘The luminescence property of 2,7-diphenyl-fluorenone(DPFO)was previously reported to be very unusual with a large aggregationinduced effect associated with a fluorescence redshift of 150 nm.The phenomenon is reexamined in this work.It is found that the abnormal observations are caused by the presence of a trace amount of impurity 2,7-diphenyl-fluorene(DPF)in the as-synthesized DPFO.The pure DPFO molecule does have an intense fluorescence(FL)in solid(528 nm),about 4−5 times larger than in its dilute dichloromethane solutions(542 nm),but with a blueshifted rather than redshifted FL wavelength in solid.The enormous FL enhancement and redshifted FL wavelength of the as-synthesized DPFO solid are due to the presence of impurity DPF.The FL of DPF is much stronger than that of DPFO in dilute solutions and it also has shorter FL wavelengths.In a dilute solution of DPFO with a trace amount of DPF(∼1%),the dominant FL peaks are from DPF.Because the electronic absorption peaks of DPF overlaps with DPFO,the electronic energy of DPF can transfer to DPFO.The energy transfer is faster with the increase of concentration because DPF and surrounding DPFO molecules become closer,which quenches the FL of DPF(356 and 372 nm)and enhances the FL of DPFO(542 nm in solution and 528 nm in solid).Therefore,at high concentrations or in solids,only peak at about 542 or 528 nm shows up,and peaks at 356 and 372 nm disappear.
基金supported by Anhui Scientific and Technological Project(No.1704a0802164)the Natural Science Foundation of the Anhui Higher Education Institutions of China(No.KJ2018A0192)
文摘Fluorogens with aggregation-induced emission (AIE) characteristics have recently been widely applied for studying biological events, and fluorogens with “smart” properties are especially desirable. Herein, we rationally designed and synthesized a biotinylated and reduction-activatable probe (Cys(StBu)-Lys(biotin)-Lys(TPE)-CBT (1)) with AIE properties for cancer-targeted imaging. The biotinylated probe 1 can be actively uptaken by the biotin receptor-overexpressing cancer cells, and then “smartly” self-assemble into nanoparticles inside cells and turn the fluorescence “On”. Employing this “smart” strategy, we successfully applied probe 1 for cancer-targeted imaging. We envision that this biotinylated intelligent probe 1 might be further developed for cancer-targeted imaging in routine clinical studies in the near future.
基金Thisworkwas supported by the Shanghai Science and Technology Committee(No.22dz1204700)the NationalKeyR&D Program of China(Nos.2020YFA0803800 and 2017YFE0132200)+2 种基金the National Natural Science Foundation of China(Nos.82072510,21907034,21788102,21525417,and 51620105009)the Natural Science Foundation of Guangdong Province(Nos.2019B030301003 and 2016A030312002)the Innovation and Technology Commission of Hong Kong(No.ITC-CNERC14S01).
文摘Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation-induced emission luminogens(AIEgens)can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout.First,we developed a series of luminogens(i.e.,tetraphenyl ethylene(TPE)-NH_(2),TPE-2NH_(2),TPE-4NH_(2),TPE-COOH,TPE-2COOH,TPE-4COOH,and TPE-Ketoalkyne),each of which was then evenly mixed with MSU crystals.Next,optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope(CLSM).This approach was used for imaging standard samples of MSU,hydroxyapatite(HAP)crystals,and mixed samples with 1:1 mass ratio of MSU/HAP.We also imaged samples from mouse models of acute gouty arthritis,HAP deposition disease,and comorbidities of interest.Subsequently,CLSM imaging results were compared with those of compensated polarized light microscopy,and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line.Finally,CLSM time series and three-dimensional imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi.As a promising candidate for MSU crystal labeling,TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples,animal samples,and human samples,and could precisely distinguish gout from HAP deposition disease.This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51973030 and 52103075)the Science and Technology Commission of Shanghai Municipality(Grant No.20JC1414900)+3 种基金Shanghai Rising-Star Program(Grant No.20QA1400100)the Fundamental Research Funds for the Central Universities"DHU" Distinguished Young Professor Program(Grant No. LZB2021001)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Polymer thermodynamics and kinetics are important components in the basic theory of polymer physics, which provide critical support for polymer processing and molding. As an important thermal analysis technology, differential scanning calorimetry(DSC) is a key way to explore the molecular motion of polymer chains, molecular structure, and condensed structure, greatly promoting the development of polymer materials. However, this technique is limited by its ambiguous results, because of inaccurate heat flow measurement and high parameter dependence. As an alternative strategy, aggregation-induced emission luminogens(AIEgens) have been extensively applied in various targets analysis and process monitoring, owing to their weak intermolecular interactions and highly twisted conformation. The optical properties of AIEgens are highly sensitive to the variations of the polymer microenvironment, including characteristic transition, crosslinking reaction, crystallization behavior, and phase separation. In this review, the progress of AIE technology in visualizing polymer molecular motion and structure evolution is summarized, compensating for the limitation of the traditional DSC method to facilitate further research in polymer science and engineering.
基金jointly supported by a key project of the Chinese Academy of Sciences (Grant No. XDB05030301)the National Natural Science Foundation of China (Grant Nos. 40905055 and 41175105)the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (Grant No. 13K04ESPCP)
文摘The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.
基金the National Natural Science Foundation of China(No.50474017).
文摘The Kaiser effect is formally described as the absence of detectable acoustic emission (AE) events until the load imposed on the material exceeds the previous applied level and is usually used to estimate geostress. By focusing on the heterogeneity of rock material, the mechanism of the Kaiser effect under cyclic loading is analyzed based on statistic damage mechanics. Two groups of granite specimens have been cyclically loaded with two different loading paths to verify the theoretical results. The heterogeneity of rock is the real reason that causes irrecoverable damage on the Kaiser effect of acoustic emission in cyclic loading. The Kaiser effect reflects the damaged state in rocks rather than the previous stress imposed on it. Applications for using the Kaiser effect to estimate geostress were discussed here. It is shown that the commonly used uniaxial loading method for estimating geostress is not in accor- dance with the theoretical and experimental results. The analysis is of importance to use the Kaiser effect correctly for estimating geostress or in other fields. 2008 University of Science and Technology Beijing. All rights reserved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10872065 and 50801025)
文摘Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interracial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.
基金supported by Beijing Natural Science Foundation(9154036)"Water Pollution Control Strategy and Decision Support Platform"[grant No.2009ZX07631-02-03]"Water Pollution Accident Damage Assessment Technology Research[grant No.201309060]"
文摘There are numerous studies comparing different kinds of environmental taxes and standards.However,forms of environmental standards focused by former researchers are usually quantitybased limits/standards(e.g.pounds per day or pounds per unit of output).Concentration-based emission standard(e.g.milligrams per liter of wastewater) as one important form of environmental standard has not been given much attention.In this article,comparable estimates of their probable effect on enterprise pollution reduction will be developed for concentrationbased effluent standards,effluent taxes,and a combination of both.A linear simulation model is used to clearly and obviously compare the effects of effluent taxes and concentration-based standards within the same figure.With one detailed application to the paper industry,some enlightenment and conclusions-as well as the general applicability of these principles-are then provided:Under the same effluent tax rate,enterprises,groups,and industries that are cleaner will reduce more pollutants than those that have higher pollutant abatement costs.It is recommended that effluent taxes are set by avoiding cutting it even at one stroke and considering the feasibility of pollution-reducing technology in various industries.It is necessary to reduce MAC of enterprises to better stimulate enterprises' or industries' emission reduction by preferential measures,such as high tax rate coordinated by speeding up the depreciation of environmental protection equipment.
基金Supported by Social Science Fund Project of Hunan Province(16YBA155)
文摘Based on Chinese provincial panel data from 2003 to 2014,the spatial dependence between the environment regulation and carbon emissions is tested by spatial autocorrelation analysis. Besides,spatial lag model and spatial error model are built to empirically test the marginal effect of environmental regulation on carbon emissions and its spatial effect. The result shows that the influence trajectory of environmental regulation on carbon emissions performances inverted " U" type. It is " green paradox effect" before the inflection point and " reversed transmission reduction effect" after the inflection point. Moreover,the carbon emissions show significant spatial spillover effect. In order to achieve the desired effect of environmental regulation and promote carbon reduction,we should increase the environmental regulation intensity reasonably,select rational environmental regulation policy tools,and sufficiently consider the spatial spillover effect of carbon emissions.
文摘China has recently implemented a dual-carbon strategy to combat climate change and other environmental issues and is committed to modernizing it sustainably.This paper supports these goals and explores how the digital economy and green finance intersect and impact carbon emissions.Using panel data from 30 Chinese provinces over the period 2011-2021,this paper finds that the digital economy and green finance can together reduce carbon emissions,and conducts several robustness tests supporting this conclusion.A heterogeneity analysis shows that these synergistic effects are more important in regions with low levels of social consumption Meanwhile,in the spatial dimension,the synergistic effect of the local digital economy and green finance adversely impacts the level of carbon emissions in surrounding areas.The findings of this paper provide insights for policymakers in guiding capital flow and implementing carbon-reduction policies while fostering the growth of China’s digital economy and environmental sustainability.
基金financially supported by The Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC) under Grant No.50772041
文摘In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.
基金Under the auspices of the National Natural Science Foundation of China(No.41371146,41671123)National Social Science Foundation of China(No.13BJY067)
文摘Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.
文摘Insufficient assessment of emission reduction effects still exists in the carbon emission rights trading system,a major environmental regulation measure in China.Based on the data from the carbon trading pilot covering the years from 2007 to 2017,this study combined the synthetic control method with dynamic spatial Durbin model to comprehensively evaluate the spatial emission reduction effects of carbon trading policies.The results showed that:①The carbon trading policies promoted carbon emission reductions in the pilot regions,among which Tianjin and Hubei responded significantly,and also helped to suppress carbon emissions in the neighboring areas.②Long-term emission reduction effect from carbon emissions trading became gradually significant,while the indirect emission reduction effect was relatively weaker.③In term of reducing carbon emissions,the economic development channel played a key role,but it had a threat to the promotion of carbon emissions in the surrounding areas.Energy consumption was the main obstacle to the growth of carbon emissions.④In the long run,technological progress tended to become the key to the effective implementation of potential emission reduction effects of carbon trading policies.Based on the above findings,we suggest that the construction of a national carbon trading market should be promoted,the balanced development and orderly advancement of regional carbon trading markets should be paid attention to,the coordinated development of green economy as well as knowledge and technology exchange and cooperation among regions should be strengthened to form a low carbon development model among regions.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10872065, 50801025Hunan Provincial Innovation Foundation for Postgraduate under Grant No. CX2009B067
文摘Shielding effect and emission criterion of a screw dislocation near an interracial crisscross crack are dealt within this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentialsand stress fields due to a screw dislocation located near the interracial crisscross crack. The stress intensity factor onthe crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of theorientation of the dislocation and the morphology of the crisscross crack as well as the material elastic dissimilarity onthe shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations canreduce the stress intensity factor of the interracial crisscross crack tip (shielding effect). The shielding effect increases withthe increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuthangle and the distance between the dislocation and the crack tip. The critical loads at infinity for dislocation emissionincreases with the increase of emission angle and the vertical length of the crisscross crack, and the most probable anglefor screw dislocation emission is zero. The present solutions contain previous results as special cases.