The morphology and properties of nanostructures are significantly influenced by the chemical coordination during their growth procedure. Using small molecule N-vinyl pyrolidone as stabilizer, this paper introduces a n...The morphology and properties of nanostructures are significantly influenced by the chemical coordination during their growth procedure. Using small molecule N-vinyl pyrolidone as stabilizer, this paper introduces a new strategy for synthesis of palladium nanospheres, which has a novel surface plasmon resonance band in the visible range. An aggregation growth mode was observed in the growth process. More specifically, the growth rate increases with increasing concentration of stabilizer. The absorption in visible region suggests new optical applications for these Pd nanospheres, such as photocatalysis, photothermal heating and surface enhanced Raman scattering.展开更多
We proposed an aggregation model of two species aggregates of fitness and population to study the interaction between the two species in their exchange-driven processes of the same species by introducing the monomer b...We proposed an aggregation model of two species aggregates of fitness and population to study the interaction between the two species in their exchange-driven processes of the same species by introducing the monomer birth of fitness catalyzed by the population, where the fitness aggregates perform self-death process and the population aggregates perform self-birth process. The kinetic behaviors of the aggregate size distributions of the fitness and population were analyzed by the rate equation approach with their exchange rate kernel K1(k,j) = K1kj and K2(k,j) = K2kj, the fitness aggregate's self-death rate kernel J1 ( k ) = J1 k, population aggregate's self-birth rate kernel J2( k ) = J2k and population-catalyzed fitness birth rate kernel I(k,j) = Ikj'. The kinetic behavior of the fitness was found depending crucially on the parameter v, which reflects the dependence of the population-catalyzed fitness birth rate on the size of the catalyst (population) aggregate. (i) In the v ≤ 0 case, the effect of catalyzed-birth of fitness is rather weak and the exchange-driven aggregation and self-death of the fitness dominate the process, and the fitness aggregate size distribution αk(t) does not have scale form. (ii) When v ≥0, the effect of the population-catalyzed birth of fitness gets strong enough, and the catalyzed-birth and self-death of the fitness aggregates, together with the self-birth of the population aggregates dominate the evolution process of the fitness aggregates. The aggregate size distribution αk (t) approaches a generalized scaling form.展开更多
We propose two irreversible aggregation growth models of aggregates of two distinct species (.4 and B) to study the interactions between virus aggregates and medicine efficacy aggregates in the virus-medicine cooper...We propose two irreversible aggregation growth models of aggregates of two distinct species (.4 and B) to study the interactions between virus aggregates and medicine efficacy aggregates in the virus-medicine cooperative evolution system. The A-species aggregates evolve driven by self monomer birth and B-species aggregate-catalyzed monomer death in model I and by self birth, catalyzed death, and self monomer exchange reactions in model II, while the catalyst B-species aggregates are assumed to be injected into the system sustainedly or at a periodic time-dependent rate. The kinetic behaviors of the A-species aggregates are investigated by the rate equation approach based on the mean-field theory with the self birth rate kernel IA(k) = Ik, catalyzed death rate kernel JAB(k) = Jk and self exchange rate kernel KA (k, l) = Kkl. The kinetic behaviors of the A-species aggregates are mainly dominated by the competition between the two effects of the self birth (with the effective rate I) and the catalyzed death (with the effective rate JB0), while the effects of the self exchanges of the A-species aggregates which appear in an effective rate KAo play important roles in the cases of I 〉 JBo and I = JBo. The evolution behaviors of the total mass M1^A(t) and the total aggregate number MA(t) are obtained, and the aggregate size distribution ak(t) of species A is found to approach a generalized scaling form in the case of I ≥ JBo and a special modified scaling form in the case of I 〈 JB0. The periodical evolution of the B-monomers concentration plays an exponential form of the periodic modulation.展开更多
An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with...An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with theconstant rate kernels In(n = 1,2, 3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k, j) = Kkj^v, and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k, j) = Lkj^v, whcre v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species ak (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (i) In the v 〈 0 case, the irreversible aggregation dominates the process, and ak(t) satisfies the conventional scaling form; (2) In the v ≥ 0 casc, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, ak(t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely.展开更多
Colloform pyrite is a special form of nano-micro polycrystalline aggregation growth, for which a suitable term is "aggregates of nano-micro crystals". This kind of colloform texture is observed in various geological...Colloform pyrite is a special form of nano-micro polycrystalline aggregation growth, for which a suitable term is "aggregates of nano-micro crystals". This kind of colloform texture is observed in various geological bodies, such as ancient sedimentary rocks, modern marine and lake sediments, various types of ore deposits, and modern seafloor hydrothermal vents. This paper summarizes the latest developments and research into the definition, formation mechanisms, and environmental indications of colloform pyrite. There appears to be three main formation mechanisms of colloform pyrite: pseudomorphic replacement; biogenic precipitation; and inorganic precipitation. The morphology, particle size, trace element content and preferential growth orientations of coUoform pyrite microcrystals can be important indicators for sedimentary environments, hydrothermal activity, and ore-forming processes. We suggest that the microscopic features of nano-micro crystals in colloform pyrite and their aggregation growth patterns need further investigation. The relationships between formation mechanisms of colioform pyrite, organic activity and depositional environments require further exploration. To reveal the nature of nano-micro grain aggregation growth in colloform pyrite and analyse its growth environment and evolutionary history, it is supposed to apply nanoscientific and nanotechnological methods, further integrate consideration of macroscopic geological backgrounds and microscopic mineral growth phenomena, combine high-resolution imaging systems and in situ quantitative microanalysis methods and constitute a mergence of earth science, thermodynamics and kinetics, life science, material science, and chemistry in the study.展开更多
The present paper studies the sources of economic growth and the nature of structural change in the Chinese economy from 1987 to 2008. Using a methodology that evaluates the contribution o fan industry to economic gro...The present paper studies the sources of economic growth and the nature of structural change in the Chinese economy from 1987 to 2008. Using a methodology that evaluates the contribution o fan industry to economic growth, the present paper shows that the post-2000 subperiod marked an increased reliance on the services sector as a source of growth in the Chinese economy. Much of the acceleration in real GDP or aggregate labor productivity growth in China in the post-2000 subperiod compared to the pre-2000 period can be traced to an increased contribution from service-producing and high-technology exporting manufacturing industries. The evidence indicates that the Chinese economy has been rebalancing toward domestic consumption and shifting its export sector toward high- technology manufacturing industries.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60571045 and 60328102)the National '973' Project of China
文摘The morphology and properties of nanostructures are significantly influenced by the chemical coordination during their growth procedure. Using small molecule N-vinyl pyrolidone as stabilizer, this paper introduces a new strategy for synthesis of palladium nanospheres, which has a novel surface plasmon resonance band in the visible range. An aggregation growth mode was observed in the growth process. More specifically, the growth rate increases with increasing concentration of stabilizer. The absorption in visible region suggests new optical applications for these Pd nanospheres, such as photocatalysis, photothermal heating and surface enhanced Raman scattering.
基金National Natural Science Foundation of China under Grant Nos.10275048 and 10305009the Natural Science Foundation of Zhejiang Province of China under Grant No.102067
文摘We proposed an aggregation model of two species aggregates of fitness and population to study the interaction between the two species in their exchange-driven processes of the same species by introducing the monomer birth of fitness catalyzed by the population, where the fitness aggregates perform self-death process and the population aggregates perform self-birth process. The kinetic behaviors of the aggregate size distributions of the fitness and population were analyzed by the rate equation approach with their exchange rate kernel K1(k,j) = K1kj and K2(k,j) = K2kj, the fitness aggregate's self-death rate kernel J1 ( k ) = J1 k, population aggregate's self-birth rate kernel J2( k ) = J2k and population-catalyzed fitness birth rate kernel I(k,j) = Ikj'. The kinetic behavior of the fitness was found depending crucially on the parameter v, which reflects the dependence of the population-catalyzed fitness birth rate on the size of the catalyst (population) aggregate. (i) In the v ≤ 0 case, the effect of catalyzed-birth of fitness is rather weak and the exchange-driven aggregation and self-death of the fitness dominate the process, and the fitness aggregate size distribution αk(t) does not have scale form. (ii) When v ≥0, the effect of the population-catalyzed birth of fitness gets strong enough, and the catalyzed-birth and self-death of the fitness aggregates, together with the self-birth of the population aggregates dominate the evolution process of the fitness aggregates. The aggregate size distribution αk (t) approaches a generalized scaling form.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10875086 and 10775104
文摘We propose two irreversible aggregation growth models of aggregates of two distinct species (.4 and B) to study the interactions between virus aggregates and medicine efficacy aggregates in the virus-medicine cooperative evolution system. The A-species aggregates evolve driven by self monomer birth and B-species aggregate-catalyzed monomer death in model I and by self birth, catalyzed death, and self monomer exchange reactions in model II, while the catalyst B-species aggregates are assumed to be injected into the system sustainedly or at a periodic time-dependent rate. The kinetic behaviors of the A-species aggregates are investigated by the rate equation approach based on the mean-field theory with the self birth rate kernel IA(k) = Ik, catalyzed death rate kernel JAB(k) = Jk and self exchange rate kernel KA (k, l) = Kkl. The kinetic behaviors of the A-species aggregates are mainly dominated by the competition between the two effects of the self birth (with the effective rate I) and the catalyzed death (with the effective rate JB0), while the effects of the self exchanges of the A-species aggregates which appear in an effective rate KAo play important roles in the cases of I 〉 JBo and I = JBo. The evolution behaviors of the total mass M1^A(t) and the total aggregate number MA(t) are obtained, and the aggregate size distribution ak(t) of species A is found to approach a generalized scaling form in the case of I ≥ JBo and a special modified scaling form in the case of I 〈 JB0. The periodical evolution of the B-monomers concentration plays an exponential form of the periodic modulation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10275048 and 10305009)the Zhejiang Provincial Natural Science Foundation of China (Grant No 102067)
文摘An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with theconstant rate kernels In(n = 1,2, 3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k, j) = Kkj^v, and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k, j) = Lkj^v, whcre v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species ak (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (i) In the v 〈 0 case, the irreversible aggregation dominates the process, and ak(t) satisfies the conventional scaling form; (2) In the v ≥ 0 casc, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, ak(t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely.
基金funded by the National Natural Science Foundation of China(41272062)the Fundamental Research Funds for the Northeastern University(N150106001)+1 种基金the Open Foundation Of State Key Laboratory Of Ore Deposit Geochemistry(Institute Of Geochemistry,Chinese Academy Of Sciences,Guiyang)(201308)the Open Foundation Of Key Laboratory Of Mineralogy and Metallogeny in Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(KLMM20150101)
文摘Colloform pyrite is a special form of nano-micro polycrystalline aggregation growth, for which a suitable term is "aggregates of nano-micro crystals". This kind of colloform texture is observed in various geological bodies, such as ancient sedimentary rocks, modern marine and lake sediments, various types of ore deposits, and modern seafloor hydrothermal vents. This paper summarizes the latest developments and research into the definition, formation mechanisms, and environmental indications of colloform pyrite. There appears to be three main formation mechanisms of colloform pyrite: pseudomorphic replacement; biogenic precipitation; and inorganic precipitation. The morphology, particle size, trace element content and preferential growth orientations of coUoform pyrite microcrystals can be important indicators for sedimentary environments, hydrothermal activity, and ore-forming processes. We suggest that the microscopic features of nano-micro crystals in colloform pyrite and their aggregation growth patterns need further investigation. The relationships between formation mechanisms of colioform pyrite, organic activity and depositional environments require further exploration. To reveal the nature of nano-micro grain aggregation growth in colloform pyrite and analyse its growth environment and evolutionary history, it is supposed to apply nanoscientific and nanotechnological methods, further integrate consideration of macroscopic geological backgrounds and microscopic mineral growth phenomena, combine high-resolution imaging systems and in situ quantitative microanalysis methods and constitute a mergence of earth science, thermodynamics and kinetics, life science, material science, and chemistry in the study.
文摘The present paper studies the sources of economic growth and the nature of structural change in the Chinese economy from 1987 to 2008. Using a methodology that evaluates the contribution o fan industry to economic growth, the present paper shows that the post-2000 subperiod marked an increased reliance on the services sector as a source of growth in the Chinese economy. Much of the acceleration in real GDP or aggregate labor productivity growth in China in the post-2000 subperiod compared to the pre-2000 period can be traced to an increased contribution from service-producing and high-technology exporting manufacturing industries. The evidence indicates that the Chinese economy has been rebalancing toward domestic consumption and shifting its export sector toward high- technology manufacturing industries.