The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate ...The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate the increased pressures on food security. It describes the need for urban cultivation systems using controlled environments and how they can be harnessed to address pressures facing food security. The factors that have contributed to the growth of CEAs, education, environmental justice, and the advantages and disadvantages of growing crops in CEAs in urban areas will be discussed. The article reviews global urban cultivation systems using controlled environments, by identifying the technologies needed to establish them. The practice of CEA is being increasingly adopted worldwide and we describe urban agriculture and compare it with traditional growing systems. Indoor farming systems that integrate into existing urban infrastructure such as vertical farming and plant factories using CEAs are discussed. Indoor farming gives urban areas enhanced access to food sources, but the cost is high, however decreasing due to recent technological advances. The current review extends the literature by incorporating recent research on the topic of agriculture in urban areas and food security. This review seeks to provide additional information regarding the viability of CEA in urban areas.展开更多
To promote the use of green control technology and ensure the safety of food production and agricultural products, a demonstrative test of agricultural control, physical control and biological control conducted in the...To promote the use of green control technology and ensure the safety of food production and agricultural products, a demonstrative test of agricultural control, physical control and biological control conducted in the Honghu area of Jianghan Plain during 2010-2016 with medium rice as the object. In addition, their control ef- ficacy was compared with that of conventional use of chemical agents. The results showed that the green control measures could achieve the prevention and control requirements, and the control efficacy of some of them was even better than that of conventional use of chemical agents.展开更多
In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseas...In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseases are reviewed from the aspects of agricultural control,botanical pesticide control and microbial pesticide control,and the development prospects are proposed,including accelerating innovative research on botani-cal pesticide control such as Chinese herb extracts,and screening microbial pesticides from valuable bio-control bacteria or plant endophyte metabolites for commercial production and utilization.展开更多
In this paper, four recent advances and achievements of China in agricultural insect research, namely, on the genome of silkworm (Bombyx mori Linnaeus), on the geographical differentiation and regional migration of co...In this paper, four recent advances and achievements of China in agricultural insect research, namely, on the genome of silkworm (Bombyx mori Linnaeus), on the geographical differentiation and regional migration of cotton bollworm (Helicoverpa armigera (Hübner)), on the standardized monitoring techniques for safety of honey bee (Apis mellifera Linnaeus) products, and on the virus transmission property of small brown planthopper (Laodelphax striatellus (Fallén)) as well as the interactions between vector and rice stripe virus (RSV), were reported. All of these researches are very important for controlling agricultural insect pests and the diseases they transmit, accelerating the molecular biological research of silkworm, and promoting the international trade of honey bee products. Most of these achievements mentioned above have got the national, provincial, ministerial or municipal awards on science and technology.展开更多
The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories o...The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories of biological control:classical and augmentative.Allowing access to BCAs for use inanother country imposes no risk of liability to the source country.Local scientific knowledge abouthabitats,fauna andflora,can be展开更多
With the rising pressures on food security, GREENBOX technology was developed as an avenue for fresh leafy vegetable crop production in urban settings. GREENBOX units were designed to be thermally insulated and climat...With the rising pressures on food security, GREENBOX technology was developed as an avenue for fresh leafy vegetable crop production in urban settings. GREENBOX units were designed to be thermally insulated and climate controlled, with an artificial lighting source that utilized soilless cultivation techniques. Previous studies conducted on GREENBOX technology used the Nutrient Film Technique (NFT);however, various hydroponic methods exist, such as the Deep-Water Culture (DWC) method being the most used. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the crop growth performance between DWC and NFT systems using GREENBOX technology. The following study monitored environmental conditions and compared productivity and biomass data of Rex Butterhead Lettuce crops between DWC and NFT systems. We assembled two GREENBOX units using commercially available materials and the standard nutrient solution for fertigation. The crops grown in DWC and NFT were in a 4 × 6 configuration. The DWC and NFT systems were used to grow Lettuce Lactuca sativa “Rex Butterhead” over 30 days to full bloom from prepared plugs grown for 14 days. We collected environmental data including Photosynthetic Photon Flux Density (PPFD, μmol/m<sup>2</sup>∙s), Daily Light Integral (DLI, mol/ m<sup>2</sup>∙d), temperature (˚C), relative humidity (%), and Vapor Pressure Deficit (VPD, kPa). We collected lettuce crop growth data, which included wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). We derived data, including the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>), from previously collected data. We used descriptive statistics to present the collected data. A paired t-test was performed to understand the differences in biomass and productivity parameters between the DWC and NFT-grown lettuce crops. Both the DWC and NFT-grown crops could grow lettuce crops to harvest weight at full bloom. Observed data demonstrated that the biomass parameters and productivity did not differ significantly between the two hydroponics techniques. Therefore, we believe both hydroponic methods may be similar in growth performance and may be used in future iterations of GREENBOX design and prove suitable for fresh vegetable crop production in urban settings.展开更多
Obtaining nutritious food is becoming increasingly difficult due to the growing urban population and the degradation of soil, water, and air from mechanized and industrialized agricultural techniques. More than half t...Obtaining nutritious food is becoming increasingly difficult due to the growing urban population and the degradation of soil, water, and air from mechanized and industrialized agricultural techniques. More than half the global population resides in urban areas, with not enough surrounding agricultural land to meet food requirements. Food traveling long distances, an average of 1020 miles, has resulted in increased food miles for the average food item in the United States of America, representing wasted resources. The novel GREENBOX technology was invented in response to increasing pressures on food security. Previous studies conducted on GREENBOX technology assessed the technical feasibility of utilizing Lettuce Lactuca sativa ‘Rex Butterhead’. We at the APS Laboratory for Sustainable Food at Florida Gulf Coast University assessed the technical feasibility of growing different leafy green vegetable crops. GREENBOX technology consists of thermally insulated climate-controlled enclosures, an artificial lighting source, a soilless cultivation method (hydroponics), and environmental control modules. We assembled two GREENBOX units to assess the environmental conditions and growth performance of Brassica rapa var. chinensis ‘Li Ren Choi’, Spinach Spinacia oleracea ‘Auroch’, Arugula Eruca sativa ‘Astro’, and Mizuna Brassica Brassica rapa var. japonica. Plugs were cultivated and then transplanted in a randomized manner to the nutrient film technique (NFT) channels, subsequently grown for 30 days to full bloom and ready for harvest. Fertigation was carried out using a standard concentration nutrient solution. Crops were arranged in twelve blocks of four species each. We collected environmental data including daily light integral (DLI, mol/m<sup>2</sup>∙d), temperature (˚C), relative humidity (%), and vapor pressure deficit (VPD, kPa). Collected biomass data included wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (mg/cm<sup>2</sup>). We then derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g). Descriptive statistics were utilized to understand the differences in biomass parameters between the four crops grown. We also compared the performance parameters of our crops with existing peer-reviewed literature and found it superior, if not comparable to commonly found industrial output. We determined that all crops grew to full bloom, demonstrating that GREENBOX technology may be used to grow a variety of different leafy green vegetable crops.展开更多
Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental iss...Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental issues such as soil degradation, deforestation, and groundwater pollution from the mass implementation of fertilizers and pesticides. Agricultural crop production using hydroponics has shown promise to be less resource intensive and provide a faster turnaround in crop production. Soilless cultivation using hydroponics promises to relieve some pressure on Earth’s ecosystems and resources by utilizing lesser land and water footprint. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the growth of Lettuce Lactuca sativa “Rex Butterhead” crop grown using soil and soilless methods to analyze the growth performance in each setting. Crops grown in the soil-based medium were raised in the FGCU Food Forest, used a mix of soil and potting mix, watered regularly, and followed standard Integrated Pest Management (IPM) practices. Crops grown hydroponically were grown in a thermally insulated grow tent with an artificial lighting source, ventilation, environmental controls, and the Deep-Water Culture (DWC) method. Lettuce plugs were grown for 15 days in controlled environments until two leaves after the cotyledons had developed and were ready for transplant. Plugs were transplanted into a 4 × 6 matrix at the FGCU Food Forest and the DWC growth system. Crops were grown to full bloom and ready for harvest in the soil (60 days) and soilless (30 days) based setups. We collected crop growth data, including wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). From the collected data, we derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>). Descriptive statistics were used to describe the collected and derived data. We investigated the slopes of regression lines for each growth curve which derived the differences in biomass and productivity parameters between lettuce grown using soil and hydroponics. Both growing methods can grow lettuce crops to full bloom and to adequate harvest weight. The biomass parameters and productivity differ significantly between the growing methods. The lettuce crops grown using hydroponics increase in wet weight statistically and significantly faster than those grown in soil (p < 0.0001). Therefore, we determined that a hydroponic method of crop production may provide better crop output and biomass indicators measured than soil-based growth.展开更多
The demand for food is tremendously increasing with the growth of the world population,which necessitates the development of sustainable agriculture under the impact of various factors,such as climate change.To fulfil...The demand for food is tremendously increasing with the growth of the world population,which necessitates the development of sustainable agriculture under the impact of various factors,such as climate change.To fulfill this challenge,we are developing Metaverses for agriculture,referred to as Agri Verse,under our Decentralized Complex Adaptive Systems in Agriculture(De CASA)project,which is a digital world of smart villages created alongside the development of Decentralized Sciences(De Sci)and Decentralized Autonomous Organizations(DAO)for Cyber-Physical-Social Systems(CPSSs).Additionally,we provide the architectures,operating modes and major applications of De CASA in AgriVerse.For achieving sustainable agriculture,a foundation model based on ACP theory and federated intelligence is envisaged.Finally,we discuss the challenges and opportunities.展开更多
In the past decades,bio-based and biodegradable polymers have attracted wide and increasing interests because of the shortage of fossil resource,concerns on environmental pollution,demands for some medical fields as w...In the past decades,bio-based and biodegradable polymers have attracted wide and increasing interests because of the shortage of fossil resource,concerns on environmental pollution,demands for some medical fields as well as support of government policies.Depending on the sustainable source of organic carbon,biodegradability and biocompatibility,these polymers have shown promising applications in industry,agriculture,biomedicine and daily life.To impart excellent physical properties and functions to them,scientists and engineers have exploited versatile methods to tune展开更多
As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities o...As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities of light,especially in leafy greens of Brassica where the responses are highly species-dependent.The accumulation of bioactive GLS were studied under 8 different treatments of combined amber(590 nm),blue(455 nm),and red(655 nm)light-emitting diodes(rbaLED).A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS.Thirteen GLS were identified,among them were 8 aliphatic,4 indolic and 1 aromatic GLS.Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B.juncea,progoitrin was highest in B.rapa and glucobrassicin in R.sativus.The individual and total GLS in the microgreens of the present study were largely different under rbaLED;B.rapa microgreens contained the highest profile of total GLS,followed by R.sativus and B.juncea.Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens,glucoalyssin uniquely increased in R.sativus and decreased in B.rapa and glucobrassicin uniquely decreased in both B.rapa and B.juncea.The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation.Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties.展开更多
文摘The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate the increased pressures on food security. It describes the need for urban cultivation systems using controlled environments and how they can be harnessed to address pressures facing food security. The factors that have contributed to the growth of CEAs, education, environmental justice, and the advantages and disadvantages of growing crops in CEAs in urban areas will be discussed. The article reviews global urban cultivation systems using controlled environments, by identifying the technologies needed to establish them. The practice of CEA is being increasingly adopted worldwide and we describe urban agriculture and compare it with traditional growing systems. Indoor farming systems that integrate into existing urban infrastructure such as vertical farming and plant factories using CEAs are discussed. Indoor farming gives urban areas enhanced access to food sources, but the cost is high, however decreasing due to recent technological advances. The current review extends the literature by incorporating recent research on the topic of agriculture in urban areas and food security. This review seeks to provide additional information regarding the viability of CEA in urban areas.
文摘To promote the use of green control technology and ensure the safety of food production and agricultural products, a demonstrative test of agricultural control, physical control and biological control conducted in the Honghu area of Jianghan Plain during 2010-2016 with medium rice as the object. In addition, their control ef- ficacy was compared with that of conventional use of chemical agents. The results showed that the green control measures could achieve the prevention and control requirements, and the control efficacy of some of them was even better than that of conventional use of chemical agents.
基金Supported by Open Fund Project of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture and Rural Affairs"Study on Precise Nutrient Demand Model of Corn"(KLPNF-2018-4)
文摘In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseases are reviewed from the aspects of agricultural control,botanical pesticide control and microbial pesticide control,and the development prospects are proposed,including accelerating innovative research on botani-cal pesticide control such as Chinese herb extracts,and screening microbial pesticides from valuable bio-control bacteria or plant endophyte metabolites for commercial production and utilization.
文摘In this paper, four recent advances and achievements of China in agricultural insect research, namely, on the genome of silkworm (Bombyx mori Linnaeus), on the geographical differentiation and regional migration of cotton bollworm (Helicoverpa armigera (Hübner)), on the standardized monitoring techniques for safety of honey bee (Apis mellifera Linnaeus) products, and on the virus transmission property of small brown planthopper (Laodelphax striatellus (Fallén)) as well as the interactions between vector and rice stripe virus (RSV), were reported. All of these researches are very important for controlling agricultural insect pests and the diseases they transmit, accelerating the molecular biological research of silkworm, and promoting the international trade of honey bee products. Most of these achievements mentioned above have got the national, provincial, ministerial or municipal awards on science and technology.
文摘The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories of biological control:classical and augmentative.Allowing access to BCAs for use inanother country imposes no risk of liability to the source country.Local scientific knowledge abouthabitats,fauna andflora,can be
文摘With the rising pressures on food security, GREENBOX technology was developed as an avenue for fresh leafy vegetable crop production in urban settings. GREENBOX units were designed to be thermally insulated and climate controlled, with an artificial lighting source that utilized soilless cultivation techniques. Previous studies conducted on GREENBOX technology used the Nutrient Film Technique (NFT);however, various hydroponic methods exist, such as the Deep-Water Culture (DWC) method being the most used. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the crop growth performance between DWC and NFT systems using GREENBOX technology. The following study monitored environmental conditions and compared productivity and biomass data of Rex Butterhead Lettuce crops between DWC and NFT systems. We assembled two GREENBOX units using commercially available materials and the standard nutrient solution for fertigation. The crops grown in DWC and NFT were in a 4 × 6 configuration. The DWC and NFT systems were used to grow Lettuce Lactuca sativa “Rex Butterhead” over 30 days to full bloom from prepared plugs grown for 14 days. We collected environmental data including Photosynthetic Photon Flux Density (PPFD, μmol/m<sup>2</sup>∙s), Daily Light Integral (DLI, mol/ m<sup>2</sup>∙d), temperature (˚C), relative humidity (%), and Vapor Pressure Deficit (VPD, kPa). We collected lettuce crop growth data, which included wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). We derived data, including the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>), from previously collected data. We used descriptive statistics to present the collected data. A paired t-test was performed to understand the differences in biomass and productivity parameters between the DWC and NFT-grown lettuce crops. Both the DWC and NFT-grown crops could grow lettuce crops to harvest weight at full bloom. Observed data demonstrated that the biomass parameters and productivity did not differ significantly between the two hydroponics techniques. Therefore, we believe both hydroponic methods may be similar in growth performance and may be used in future iterations of GREENBOX design and prove suitable for fresh vegetable crop production in urban settings.
文摘Obtaining nutritious food is becoming increasingly difficult due to the growing urban population and the degradation of soil, water, and air from mechanized and industrialized agricultural techniques. More than half the global population resides in urban areas, with not enough surrounding agricultural land to meet food requirements. Food traveling long distances, an average of 1020 miles, has resulted in increased food miles for the average food item in the United States of America, representing wasted resources. The novel GREENBOX technology was invented in response to increasing pressures on food security. Previous studies conducted on GREENBOX technology assessed the technical feasibility of utilizing Lettuce Lactuca sativa ‘Rex Butterhead’. We at the APS Laboratory for Sustainable Food at Florida Gulf Coast University assessed the technical feasibility of growing different leafy green vegetable crops. GREENBOX technology consists of thermally insulated climate-controlled enclosures, an artificial lighting source, a soilless cultivation method (hydroponics), and environmental control modules. We assembled two GREENBOX units to assess the environmental conditions and growth performance of Brassica rapa var. chinensis ‘Li Ren Choi’, Spinach Spinacia oleracea ‘Auroch’, Arugula Eruca sativa ‘Astro’, and Mizuna Brassica Brassica rapa var. japonica. Plugs were cultivated and then transplanted in a randomized manner to the nutrient film technique (NFT) channels, subsequently grown for 30 days to full bloom and ready for harvest. Fertigation was carried out using a standard concentration nutrient solution. Crops were arranged in twelve blocks of four species each. We collected environmental data including daily light integral (DLI, mol/m<sup>2</sup>∙d), temperature (˚C), relative humidity (%), and vapor pressure deficit (VPD, kPa). Collected biomass data included wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (mg/cm<sup>2</sup>). We then derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g). Descriptive statistics were utilized to understand the differences in biomass parameters between the four crops grown. We also compared the performance parameters of our crops with existing peer-reviewed literature and found it superior, if not comparable to commonly found industrial output. We determined that all crops grew to full bloom, demonstrating that GREENBOX technology may be used to grow a variety of different leafy green vegetable crops.
文摘Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental issues such as soil degradation, deforestation, and groundwater pollution from the mass implementation of fertilizers and pesticides. Agricultural crop production using hydroponics has shown promise to be less resource intensive and provide a faster turnaround in crop production. Soilless cultivation using hydroponics promises to relieve some pressure on Earth’s ecosystems and resources by utilizing lesser land and water footprint. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the growth of Lettuce Lactuca sativa “Rex Butterhead” crop grown using soil and soilless methods to analyze the growth performance in each setting. Crops grown in the soil-based medium were raised in the FGCU Food Forest, used a mix of soil and potting mix, watered regularly, and followed standard Integrated Pest Management (IPM) practices. Crops grown hydroponically were grown in a thermally insulated grow tent with an artificial lighting source, ventilation, environmental controls, and the Deep-Water Culture (DWC) method. Lettuce plugs were grown for 15 days in controlled environments until two leaves after the cotyledons had developed and were ready for transplant. Plugs were transplanted into a 4 × 6 matrix at the FGCU Food Forest and the DWC growth system. Crops were grown to full bloom and ready for harvest in the soil (60 days) and soilless (30 days) based setups. We collected crop growth data, including wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). From the collected data, we derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>). Descriptive statistics were used to describe the collected and derived data. We investigated the slopes of regression lines for each growth curve which derived the differences in biomass and productivity parameters between lettuce grown using soil and hydroponics. Both growing methods can grow lettuce crops to full bloom and to adequate harvest weight. The biomass parameters and productivity differ significantly between the growing methods. The lettuce crops grown using hydroponics increase in wet weight statistically and significantly faster than those grown in soil (p < 0.0001). Therefore, we determined that a hydroponic method of crop production may provide better crop output and biomass indicators measured than soil-based growth.
基金supported in part by the National Key Research and Development Program of China under Grant2021ZD0113701,2021ZD0113704the National Natural Science Foundation of China under Grant 62076239Chinese Academy of Sciences-Thailand National Science and Technology Development Agency Joint Research Program under Grant GJHZ2076。
文摘The demand for food is tremendously increasing with the growth of the world population,which necessitates the development of sustainable agriculture under the impact of various factors,such as climate change.To fulfill this challenge,we are developing Metaverses for agriculture,referred to as Agri Verse,under our Decentralized Complex Adaptive Systems in Agriculture(De CASA)project,which is a digital world of smart villages created alongside the development of Decentralized Sciences(De Sci)and Decentralized Autonomous Organizations(DAO)for Cyber-Physical-Social Systems(CPSSs).Additionally,we provide the architectures,operating modes and major applications of De CASA in AgriVerse.For achieving sustainable agriculture,a foundation model based on ACP theory and federated intelligence is envisaged.Finally,we discuss the challenges and opportunities.
文摘In the past decades,bio-based and biodegradable polymers have attracted wide and increasing interests because of the shortage of fossil resource,concerns on environmental pollution,demands for some medical fields as well as support of government policies.Depending on the sustainable source of organic carbon,biodegradability and biocompatibility,these polymers have shown promising applications in industry,agriculture,biomedicine and daily life.To impart excellent physical properties and functions to them,scientists and engineers have exploited versatile methods to tune
基金supported by the A-base funds of Agriculture&Agri-food Canada(AAFC).Project#J-001328.001.04 and#J-002228.001.07.
文摘As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities of light,especially in leafy greens of Brassica where the responses are highly species-dependent.The accumulation of bioactive GLS were studied under 8 different treatments of combined amber(590 nm),blue(455 nm),and red(655 nm)light-emitting diodes(rbaLED).A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS.Thirteen GLS were identified,among them were 8 aliphatic,4 indolic and 1 aromatic GLS.Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B.juncea,progoitrin was highest in B.rapa and glucobrassicin in R.sativus.The individual and total GLS in the microgreens of the present study were largely different under rbaLED;B.rapa microgreens contained the highest profile of total GLS,followed by R.sativus and B.juncea.Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens,glucoalyssin uniquely increased in R.sativus and decreased in B.rapa and glucobrassicin uniquely decreased in both B.rapa and B.juncea.The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation.Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties.