This study tested and evaluated the agricultural non-point source (AGNPS) model for the Wuchuan catchment, a typical agricultural area in the Jiulong River watershed, Fujian Province, China. The AGNPS model was cali...This study tested and evaluated the agricultural non-point source (AGNPS) model for the Wuchuan catchment, a typical agricultural area in the Jiulong River watershed, Fujian Province, China. The AGNPS model was calibrated and validated for the study area with observed data on ten storms. The data on eight storms in 2002 were used for calibration while data on two storms were used for validation of the model. Considering the lack of water quality data over a long-term series, a novel method, comparing an internal nested catchment with its surrounding catchment, was used to supplement the less long-term series data. Dual calibration and validation of the AGNPS model was obtained by this comparison. The results indicate that the correlation coefficients were 0.99 and 0.98 for runoff, 0.94 and 0.95 for the peak runoff rate of the large catchment and the small catchment, respectively, and 0.76 for the sediment of the small catchment only. Each pair of correlation coefficients is homogeneous for the same event for the two catchments. With the exception of the sediment yield and particulate phosphorus, the peak runoff rate and other nutrients were well predicted. Sensitivity analysis showed that the Soil Conservation Service curve number and rainfall quantity were the most sensitive parameters, which resulted in high output variations. Erosivity and other parameters had little influence on the hydrological and quality outputs.展开更多
Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological sou...Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological source in middle and upper reaches of the Xi River from the perspectives of scientific layout, legal construction, routine monitoring, technology integration, and coordination system in order to promote sustainable development of eco-environment in Xi River.展开更多
This paper mainly discusses the feasibility to establish economic policy systems for control and management of agricultural nonpoint source pollution in China. The current situation of serious agricultural nonpoint so...This paper mainly discusses the feasibility to establish economic policy systems for control and management of agricultural nonpoint source pollution in China. The current situation of serious agricultural nonpoint source pollution in China is described firstly. Based on the environmental policy and economics theories, the system of economic policies for control and management of agricultural nonpoint source pollution is designed in this paper. This system includes the policy objective, the designing principle and the methods. The key issues include pollution charge, inputs tax for restriction, subsides for induction and incentive, effluent trading for least cost reduction. The emphases are optimized on inputs tax and agricultural chemical tax permit under complete information, as well as sub-optimized inputs tax under incomplete information, subsides for farm due to positive and negative externality. The functions and suitability of the policies are also analyzed in the paper. According to the field experiment results and other relating economic data in watershed of the Chaohe River, Beijing, some economic approaches to reducing agricultural nonpoint source pollution are proposed. The main idea is to encourage and support the farmers to improve their farming way, and to implement the policy of castigating charge simultaneously. The feasibility of the policies are analyzed with consideration of economy, technology and institution. It is concluded that the economic policies are necessary and feasible.展开更多
A large proportion of the rural labor force in China will continue to transfer to non-agricultural sectors in the near future, which will inevitably lead to the transformation of the agricultural production mode and t...A large proportion of the rural labor force in China will continue to transfer to non-agricultural sectors in the near future, which will inevitably lead to the transformation of the agricultural production mode and the structure of the farmers’ livelihood. The Chinese government is making great efforts to govern agricultural nonpoint source pollution(ANSP), and farmers’ environmental behavior is a key factor that must be considered in the formulation of agricultural environmental policies. Based on a set of micro survey data on farmers in the study area and econometric methods, this study investigates the impact of agricultural labor transfer on ANSP by considering the substitution effect of agricultural factors and the effect of agricultural economies of scale. The results show that the increase of the agricultural labor force will not be conducive to reducing ANSP, while the income increase brought by agricultural labor transfer will improve the input structure of agricultural factors and have a positive impact on ANSP reduction. Government departments should provide subsidies or incentive measures to help agricultural social service organizations to expand their coverage and increase the frequency of socialized agricultural services, in order to guide farmers in the use of environment-friendly agricultural technology to reduce the ANSP caused by agricultural factors at the source. Furthermore, it is necessary to facilitate the development of small-sized agricultural machinery suitable for small-area land cultivation.展开更多
Nanomaterials are applicable in the areas of reduction of environmental burden,reduction/treatment of industrial and agricultural wastes,and nonpoint source(NPS)pollution control.First,environmental burden reduction i...Nanomaterials are applicable in the areas of reduction of environmental burden,reduction/treatment of industrial and agricultural wastes,and nonpoint source(NPS)pollution control.First,environmental burden reduction involves green process and engineering,emissions control,desulfurization/denitrification of nonrenewable energy sources,and improvement of agriculture and food systems.Second,reduction/treatment of industrial and agricultural wastes involves converting wastes into products,groundwater remediation,adsorption,delaying photocatalysis,and nanomembranes.Third,NPS pollution control involves controlling water pollution.Nanomaterials alter physical properties on a nanoscale due to their high specific surface area to volume ratio.They are used as catalysts,adsorbents,membranes,and additives to increase activity and capability due to their high specific surface areas and nano-sized effects.Thus,nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.展开更多
文摘This study tested and evaluated the agricultural non-point source (AGNPS) model for the Wuchuan catchment, a typical agricultural area in the Jiulong River watershed, Fujian Province, China. The AGNPS model was calibrated and validated for the study area with observed data on ten storms. The data on eight storms in 2002 were used for calibration while data on two storms were used for validation of the model. Considering the lack of water quality data over a long-term series, a novel method, comparing an internal nested catchment with its surrounding catchment, was used to supplement the less long-term series data. Dual calibration and validation of the AGNPS model was obtained by this comparison. The results indicate that the correlation coefficients were 0.99 and 0.98 for runoff, 0.94 and 0.95 for the peak runoff rate of the large catchment and the small catchment, respectively, and 0.76 for the sediment of the small catchment only. Each pair of correlation coefficients is homogeneous for the same event for the two catchments. With the exception of the sediment yield and particulate phosphorus, the peak runoff rate and other nutrients were well predicted. Sensitivity analysis showed that the Soil Conservation Service curve number and rainfall quantity were the most sensitive parameters, which resulted in high output variations. Erosivity and other parameters had little influence on the hydrological and quality outputs.
基金Supported by Guangxi Agricultural Key Science & Technology Program(201528)Nanning Science Research and Technology Development Planning Program(20152054-13)+2 种基金Guangxi Science Research and Technology Development Planning Program(15104001-22)Guangxi Academy of Agricultural Sciences S&T Development Foundation(TF06)Xixiangtang District Science Research and Technology Development Planning Program(2015312)~~
文摘Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological source in middle and upper reaches of the Xi River from the perspectives of scientific layout, legal construction, routine monitoring, technology integration, and coordination system in order to promote sustainable development of eco-environment in Xi River.
基金Underthe auspicesofK ey TeacherFoundation ofM inistry ofEducation ofC hina (N o.G G -830-10082-1518),Projecton Science and Technology ofBeijing M unicipalEducation C om m ission (N o.K M 200510028012)
文摘This paper mainly discusses the feasibility to establish economic policy systems for control and management of agricultural nonpoint source pollution in China. The current situation of serious agricultural nonpoint source pollution in China is described firstly. Based on the environmental policy and economics theories, the system of economic policies for control and management of agricultural nonpoint source pollution is designed in this paper. This system includes the policy objective, the designing principle and the methods. The key issues include pollution charge, inputs tax for restriction, subsides for induction and incentive, effluent trading for least cost reduction. The emphases are optimized on inputs tax and agricultural chemical tax permit under complete information, as well as sub-optimized inputs tax under incomplete information, subsides for farm due to positive and negative externality. The functions and suitability of the policies are also analyzed in the paper. According to the field experiment results and other relating economic data in watershed of the Chaohe River, Beijing, some economic approaches to reducing agricultural nonpoint source pollution are proposed. The main idea is to encourage and support the farmers to improve their farming way, and to implement the policy of castigating charge simultaneously. The feasibility of the policies are analyzed with consideration of economy, technology and institution. It is concluded that the economic policies are necessary and feasible.
基金The National Natural Science Foundation of China (71803071,72063014)The Natural Science Foundation of Jiangxi Province (20181BAB211006)+1 种基金Humanities and Social Sciences Foundation in Ministry of Education of China (20YJC790014)The Humanities and Social Science Foundation of Jiangxi Province (JJ20204)。
文摘A large proportion of the rural labor force in China will continue to transfer to non-agricultural sectors in the near future, which will inevitably lead to the transformation of the agricultural production mode and the structure of the farmers’ livelihood. The Chinese government is making great efforts to govern agricultural nonpoint source pollution(ANSP), and farmers’ environmental behavior is a key factor that must be considered in the formulation of agricultural environmental policies. Based on a set of micro survey data on farmers in the study area and econometric methods, this study investigates the impact of agricultural labor transfer on ANSP by considering the substitution effect of agricultural factors and the effect of agricultural economies of scale. The results show that the increase of the agricultural labor force will not be conducive to reducing ANSP, while the income increase brought by agricultural labor transfer will improve the input structure of agricultural factors and have a positive impact on ANSP reduction. Government departments should provide subsidies or incentive measures to help agricultural social service organizations to expand their coverage and increase the frequency of socialized agricultural services, in order to guide farmers in the use of environment-friendly agricultural technology to reduce the ANSP caused by agricultural factors at the source. Furthermore, it is necessary to facilitate the development of small-sized agricultural machinery suitable for small-area land cultivation.
文摘Nanomaterials are applicable in the areas of reduction of environmental burden,reduction/treatment of industrial and agricultural wastes,and nonpoint source(NPS)pollution control.First,environmental burden reduction involves green process and engineering,emissions control,desulfurization/denitrification of nonrenewable energy sources,and improvement of agriculture and food systems.Second,reduction/treatment of industrial and agricultural wastes involves converting wastes into products,groundwater remediation,adsorption,delaying photocatalysis,and nanomembranes.Third,NPS pollution control involves controlling water pollution.Nanomaterials alter physical properties on a nanoscale due to their high specific surface area to volume ratio.They are used as catalysts,adsorbents,membranes,and additives to increase activity and capability due to their high specific surface areas and nano-sized effects.Thus,nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.